Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor genes in breast cancer cell lines
详细信息    查看全文
  • 作者:Natascia Marino ; Joshua W. Collins ; Changyu Shen…
  • 关键词:Metastasis suppressor genes ; Metastasis ; Gene expression profiling ; Bioinformatics ; PDE5A ; Breast cancer
  • 刊名:Clinical & Experimental Metastasis
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:31
  • 期:7
  • 页码:771-786
  • 全文大小:1,160 KB
  • 参考文献:1. DeSantis C et al (2014) Breast cancer statistics, 2013. CA Cancer J Clin 64(1):52-2 CrossRef
    2. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11-0 CrossRef
    3. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369(9574):1742-757 CrossRef
    4. Stafford LJ, Vaidya KS, Welch DR (2008) Metastasis suppressors genes in cancer. Int J Biochem Cell Biol 40(5):874-91 CrossRef
    5. Steeg PS et al (1988) Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 48(22):6550-554
    6. Sleeman J, Steeg PS (2010) Cancer metastasis as a therapeutic target. Eur J Cancer 46(7):1177-180 CrossRef
    7. Berger JC et al (2005) Metastasis suppressor genes: from gene identification to protein function and regulation. Cancer Biol Ther 4(8):805-12 CrossRef
    8. Samant RS et al (2007) Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation. Mol Cancer 6:6 CrossRef
    9. Smith SC, Theodorescu D (2009) Learning therapeutic lessons from metastasis suppressor proteins. Nat Rev Cancer 9(4):253-64 CrossRef
    10. Palmieri D et al (2005) Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J Natl Cancer Inst 97(9):632-42 CrossRef
    11. Liu F, Qi HL, Chen HL (2000) Effects of all-trans retinoic acid and epidermal growth factor on the expression of Nm23-H1 in human hepatocarcinoma cells. J Cancer Res Clin Oncol 126(2):85-0
    12. Mashimo T et al (2000) Activation of the tumor metastasis suppressor gene, KAI1, by etoposide is mediated by p53 and c-Jun genes. Biochem Biophys Res Commun 274(2):370-76 CrossRef
    13. El Touny LH, Banerjee PP (2007) Genistein induces the metastasis suppressor kangai-1 which mediates its anti-invasive effects in TRAMP cancer cells. Biochem Biophys Res Commun 361(1):169-75 CrossRef
    14. Horak CE et al (2007) Nm23-H1 suppresses metastasis by inhibiting expression of the lysophosphatidic acid receptor EDG2. Cancer Res 67(24):11751-1759 CrossRef
    15. Titus B et al (2005) Endothelin axis is a target of the lung metastasis suppressor gene RhoGDI2. Cancer Res 65(16):7320-327 CrossRef
    16. Horak CE et al (2007) Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res 67(15):7238-246 CrossRef
    17. Marshall JC et al (2012) Effect of inhibition of the lysophosphatidic acid receptor 1 on metastasis and metastatic dormancy in breast cancer. J Natl Cancer Inst 104(17):1306-319
    18. Minn AJ et al (2012) Identification of novel metastasis suppressor signaling pathways for breast cancer. Cell Cycle 11(13):2452-457 CrossRef
    19. Yun J et al (2011) Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J 30(21):4500-514 CrossRef
    20. Xia W et al (2001) The Src-suppressed C kinase substrate, SSeCKS, is a potential metastasis inhibitor in prostate cancer. Cancer Res 61(14):5644-651
    21. Theodorescu D et al (2004) Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer. Clin Cancer Res 10(11):3800-806 CrossRef
    22. Phadke PA et al (2008) BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am J Pathol 172(3):809-17 CrossRef
    23. Stupack DG et al (2006) Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature 439(7072):95-9 CrossRef
    24. Rudy W et al (1993) The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: each one individually suffices to confer metastatic behavior. Cancer Res 53(6):1262-268
    25. Kallakury BV et al (1996) Decreased levels of CD44 protein and mRNA in prostate carcinoma. Correlation with tumor grade and ploidy. Cancer 78(7):1461-469 CrossRef
    26. Phillips KK et al (1998) Correlation between reduction of metastasis in the MDA-MB-435 model system and increased expression of the Kai-1 protein. Mol Carcinog 21(2):111-20 CrossRef
    27. Yang X et al (1997) KAI1, a putative marker for metastatic potential in human breast cancer. Cancer Lett 119(2):149-55 CrossRef
    28. Perl AK et al (1998) A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392(6672):190-93 CrossRef
    29. Frixen UH et al (1991) E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113(1):173-85 CrossRef
    30. Kashima T et al (2003) Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int J Cancer (Journal international du cancer) 104(2):147-54 CrossRef
    31. Nakajima G et al (2008) CDH11 expression is associated with survival in patients with osteosarcoma. Cancer Genomics Proteomics 5(1):37-2
    32. Guan RJ et al (2000) Drg-1 as a differentiation-related, putative metastatic suppressor gene in human colon cancer. Cancer Res 60(3):749-55
    33. Fujita H et al (2001) Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect. Int J Cancer (Journal international du cancer) 93(6):773-80 CrossRef
    34. Beck BH, Welch DR (2010) The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. Eur J Cancer 46(7):1283-289 CrossRef
    35. Yamada SD et al (2002) Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res 62(22):6717-723
    36. Hickson JA et al (2006) The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 66(4):2264-270 CrossRef
    37. Vander Griend DJ et al (2005) Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Res 65(23):10984-0991 CrossRef
    38. Hagan S et al (2005) Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Re 11(20):7392-397 CrossRef
    39. Gautam A, Bepler G (2006) Suppression of lung tumor formation by the regulatory subunit of ribonucleotide reductase. Cancer Res 66(13):6497-502 CrossRef
    40. Beyer I et al (2011) Controlled extracellular matrix degradation in breast cancer tumors improves therapy by trastuzumab. Mol Ther 19(3):479-89 CrossRef
    41. Wang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671-79 CrossRef
    42. Pawitan Y et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res: BCR 7(6):R953–R964 CrossRef
    43. Muggerud AA et al (2010) Molecular diversity in ductal carcinoma in situ (DCIS) and early invasive breast cancer. Mol Oncol 4(4):357-68 CrossRef
    44. Guillemette C et al (2010) UGT genomic diversity: beyond gene duplication. Drug Metab Rev 42(1):24-4 CrossRef
    45. Guillemette C et al (2000) Genetic polymorphisms in uridine diphospho-glucuronosyltransferase 1A1 and association with breast cancer among African Americans. Cancer Res 60(4):950-56
    46. Albert C et al (1999) The monkey and human uridine diphosphate-glucuronosyltransferase UGT1A9, expressed in steroid target tissues, are estrogen-conjugating enzymes. Endocrinology 140(7):3292-302
    47. Okamoto PM, Herskovits JS, Vallee RB (1997) Role of the basic, proline-rich region of dynamin in Src homology 3 domain binding and endocytosis. J Biol Chem 272(17):11629-1635 CrossRef
    48. Justesen J, Hartmann R, Kjeldgaard NO (2000) Gene structure and function of the 2-5-oligoadenylate synthetase family. Cell Mol Life Sci: CMLS 57(11):1593-612 CrossRef
    49. Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797-19 CrossRef
    50. Juilfs DM et al (1999) Cyclic GMP as substrate and regulator of cyclic nucleotide phosphodiesterases (PDEs). Rev Physiol Biochem Pharmacol 135:67-04 CrossRef
    51. Boolell M et al (1996) Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 8(2):47-2
    52. Weber GF (2013) Why does cancer therapy lack effective anti-metastasis drugs? Cancer Lett 328(2):207-11 CrossRef
    53. Brabletz T et al (2013) Roadblocks to translational advances on metastasis research. Nat Med 19(9):1104-109 CrossRef
    54. Steeg PS (2012) Perspective: the right trials. Nature 485(7400):S58–S59 CrossRef
    55. Perrais D, Merrifield CJ (2005) Dynamics of endocytic vesicle creation. Dev Cell 9(5):581-92 CrossRef
    56. Ochoa GC et al (2000) A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol 150(2):377-89 CrossRef
    57. Gold ES et al (1999) Dynamin 2 is required for phagocytosis in macrophages. J Exp Med 190(12):1849-856 CrossRef
    58. Kruchten AE, McNiven MA (2006) Dynamin as a mover and pincher during cell migration and invasion. J Cell Sci 119(Pt 9):1683-690 CrossRef
    59. Thompson HM et al (2002) The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr Biol: CB 12(24):2111-117 CrossRef
    60. Harper CB et al (2013) Targeting membrane trafficking in infection prophylaxis: dynamin inhibitors. Trends Cell Biol 23(2):90-01 CrossRef
    61. Domingo-Gil E, Esteban M (2006) Role of mitochondria in apoptosis induced by the 2-5A system and mechanisms involved. Apoptosis: Int J Program Cell Death 11(5):725-38 CrossRef
    62. Mandal S, Abebe F, Chaudhary J (2011) 2-5-Oligoadenylate synthetase 1 polymorphism is associated with prostate cancer. Cancer 117(24):5509-518 CrossRef
    63. Kazma R et al (2012) Association of the innate immunity and inflammation pathway with advanced prostate cancer risk. PLoS One 7(12):e51680 CrossRef
    64. Campbell CL et al (2001) Increased expression of the interleukin-11 receptor and evidence of STAT3 activation in prostate carcinoma. Am J Pathol 158(1):25-2 CrossRef
    65. Campbell CL et al (2001) Interleukin-11 receptor expression in primary ovarian carcinomas. Gynecol Oncol 80(2):121-27 CrossRef
    66. Hanavadi S et al (2006) Expression of interleukin 11 and its receptor and their prognostic value in human breast cancer. Ann Surg Oncol 13(6):802-08 CrossRef
    67. Yoshizaki A et al (2006) Expression of interleukin (IL)-11 and IL-11 receptor in human colorectal adenocarcinoma: IL-11 up-regulation of the invasive and proliferative activity of human colorectal carcinoma cells. Int J Oncol 29(4):869-76
    68. Mackenzie PI et al (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15(10):677-85 CrossRef
    69. Gong QH et al (2001) Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics 11(4):357-68 CrossRef
    70. Lepine J et al (2004) Specificity and regioselectivity of the conjugation of estradiol, estrone, and their catecholestrogen and methoxyestrogen metabolites by human uridine diphospho-glucuronosyltransferases expressed in endometrium. J Clin Endocrinol Metab 89(10):5222-232 CrossRef
    71. Gagne JF et al (2002) Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol 62(3):608-17 CrossRef
    72. Innocenti F et al (2005) Haplotypes of variants in the UDP-glucuronosyltransferase 1A9 and 1A1 genes. Pharmacogenet Genomics 15(5):295-01 CrossRef
    73. Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109(3):366-98 CrossRef
    74. Maurice DH et al (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13(4):290-14 CrossRef
    75. Lim JT et al (1999) Sulindac derivatives inhibit growth and induce apoptosis in human prostate cancer cell lines. Biochem Pharmacol 58(7):1097-107 CrossRef
    76. Sarfati M et al (2003) Sildenafil and vardenafil, types 5 and 6 phosphodiesterase inhibitors, induce caspase-dependent apoptosis of B-chronic lymphocytic leukemia cells. Blood 101(1):265-69 CrossRef
    77. Zhu B et al (2005) Suppression of cyclic GMP-specific phosphodiesterase 5 promotes apoptosis and inhibits growth in HT29 cells. J Cell Biochem 94(2):336-50 CrossRef
    78. Shimizu-Albergine M et al (2003) Individual cerebellar Purkinje cells express different cGMP phosphodiesterases (PDEs): in vivo phosphorylation of cGMP-specific PDE (PDE5) as an indicator of cGMP-dependent protein kinase (PKG) activation. J Neurosci 23(16):6452-459
    79. Li Z et al (2003) A stimulatory role for cGMP-dependent protein kinase in platelet activation. Cell 112(1):77-6 CrossRef
    80. Sopory S, Kaur T, Visweswariah SS (2004) The cGMP-binding, cGMP-specific phosphodiesterase (PDE5): intestinal cell expression, regulation and role in fluid secretion. Cell Signal 16(6):681-92 CrossRef
    81. Stark S et al (2001) Vardenafil increases penile rigidity and tumescence in men with erectile dysfunction after a single oral dose. Eur Urol 40(2):181-88 discussion 9-0 CrossRef
    82. Yip-Schneider MT et al (2001) Cell cycle effects of nonsteroidal anti-inflammatory drugs and enhanced growth inhibition in combination with gemcitabine in pancreatic carcinoma cells. J Pharmacol Exp Ther 298(3):976-85
    83. Pusztai L et al (2003) Phase I and II study of exisulind in combination with capecitabine in patients with metastatic breast cancer. J Clin Oncol 21(18):3454-461 CrossRef
    84. Whitehead CM et al (2003) Exisulind-induced apoptosis in a non-small cell lung cancer orthotopic lung tumor model augments docetaxel treatment and contributes to increased survival. Mol Cancer Ther 2(5):479-88
    85. Soriano AF et al (1999) Synergistic effects of new chemopreventive agents and conventional cytotoxic agents against human lung cancer cell lines. Cancer Res 59(24):6178-184
    86. Li Q, Shu Y (2014) Pharmacological modulation of cytotoxicity and cellular uptake of anti-cancer drugs by PDE5 inhibitors in lung cancer cells. Pharm Res 31(1):86-6. doi:10.1007/s11095-013-1134-0
    87. Hu J et al (2010) Phosphodiesterase type 5 inhibitors increase Herceptin transport and treatment efficacy in mouse metastatic brain tumor models. PLoS One 5(4):e10108 CrossRef
    88. Arozarena I et al (2011) Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 19(1):45-7 CrossRef
    89. Murthy KS (2008) Contractile agonists attenuate cGMP levels by stimulating phosphorylation of cGMP-specific PDE5; an effect mediated by RhoA/PKC-dependent inhibition of protein phosphatase 1. Br J Pharmacol 153(6):1214-224 CrossRef
    90. Geng Y et al (1998) Cyclic GMP and cGMP-binding phosphodiesterase are required for interleukin-1-induced nitric oxide synthesis in human articular chondrocytes. J Biol Chem 273(42):27484-7491 CrossRef
  • 作者单位:Natascia Marino (1)
    Joshua W. Collins (1)
    Changyu Shen (2)
    Natasha J. Caplen (3)
    Anand S. Merchant (4)
    Yesim G?kmen-Polar (5)
    Chirayu P. Goswami (6)
    Takashi Hoshino (7)
    Yongzhen Qian (8)
    George W. Sledge Jr (10) (9)
    Patricia S. Steeg (1)

    1. Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37/Room 1126, 37 Convent Drive, Bethesda, MD, 20892, USA
    2. Department of Biostatistics, Indiana University School of?Medicine, Indianapolis, IN, USA
    3. Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
    4. CCRIFX Bioinformatics Core, Advanced Biomedical Computing Center, Leidos Biomed, Frederick, MD, USA
    5. Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
    6. Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
    7. Takeda Pharmaceutical Company Ltd, Tsukuba, Japan
    8. Laboratory Animal Sciences Program, SAIC-Frederick, National Cancer Institute, Frederick, MD, USA
    10. Stanford University School of Medicine, Palo Alto, CA, USA
    9. Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
  • ISSN:1573-7276
文摘
Metastasis suppressor genes (MSGs) have contributed to an understanding of regulatory pathways unique to the lethal metastatic process. When re-expressed in experimental models, MSGs block cancer spread to, and colonization of distant sites without affecting primary tumor formation. Genes have been identified with expression patterns inverse to a single MSG, and found to encode functional, druggable signaling pathways. We now hypothesize that common signaling pathways mediate the effects of multiple MSGs. By gene expression profiling of human MCF7 breast carcinoma cells expressing a scrambled siRNA, or siRNAs to each of 19 validated MSGs (NME1, BRMS1, CD82, CDH1, CDH2, CDH11, CASP8, MAP2K4, MAP2K6, MAP2K7, MAPK14, GSN, ARHGDIB, AKAP12, DRG1, CD44, PEBP1, RRM1, KISS1), we identified genes whose expression was significantly opposite to at least five MSGs. Five genes were selected for further analysis: PDE5A, UGT1A, IL11RA, DNM3 and OAS1. After stable downregulation of each candidate gene in the aggressive human breast cancer cell line MDA-MB-231T, in vitro motility was significantly inhibited. Two stable clones downregulating PDE5A (phosphodiesterase 5A),?an enzyme involved in the regulation of cGMP-specific signaling, exhibited no difference in cell proliferation, but reduced motility by 47 and 66?% compared to the empty vector-expressing cells (p?=?0.01 and p?=?0.005). In an experimental metastasis assay, two shPDE5A-MDA-MB-231T clones produced 47-2?% fewer lung metastases than shRNA-scramble expressing cells (p?=?0.045 and p?=?0.009 respectively). This study demonstrates that previously unrecognized genes are inversely related to the expression of multiple MSGs, contribute to aspects of metastasis, and may stand as novel therapeutic targets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700