MEMS-based microelectrode technologies capable of penetrating neural tissues
详细信息    查看全文
  • 作者:Namsun Chou (1)
    Donghak Byun (1)
    Sohee Kim (1) (2)
  • 关键词:Penetrating electrode ; Neural electrode ; Microelectrode ; Silicon ; based ; Polymer ; based ; MEMS
  • 刊名:Biomedical Engineering Letters
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:4
  • 期:2
  • 页码:109-119
  • 全文大小:7,806 KB
  • 参考文献:1. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005; 8(9):1263鈥?. CrossRef
    2. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K. Multimodal fast optical interrogation of neural circuitry. Nature. 2007; 446(7136):633鈥?. CrossRef
    3. Deisseroth K. Optogenetics. Nat Methods. 2011; 8(1):26鈥?. CrossRef
    4. Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, Ramakrishnan C, Deisseroth K, Shenoy KV. An optogenetic toolbox designed for primates. Nat Neurosci. 2011; 14(3):387鈥?7. CrossRef
    5. Bai Q, Wise KD. Single-unit neural recording with active microelectrode arrays. IEEE T Biomed Eng. 2001; 48(8):911鈥?0. CrossRef
    6. Kipke DR, Vetter RJ, Williams JC, Hetke JF. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE T Neural Syst Rehabil Eng. 2003; 11(2):151鈥?. CrossRef
    7. Jones KE, Campbell PK, Normann RA. A glass/silicon composite intracortical electrode array. Ann Biomed Eng. 1992; 20(4):423鈥?7. CrossRef
    8. Branner A, Stein RB, Normann RA. Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J Neurophysiol. 2001; 85(4):1585鈥?4.
    9. Geddes LA, Roeder R. Criteria for the selection of materials for implanted electrodes. Ann Biomed Eng. 2003; 31(7):879鈥?0. CrossRef
    10. Yao Y, Gulari MN, Hetke JF, Wise KD. A low-profile threedimensional neural stimulating array with on-chip current generation. Conf Proc IEEE Eng Med Bio Soc. 2004; 1:1994鈥?.
    11. Kipke DR, Shain W, Buzsaki G, Fetz E, Henderson JM, Hetke JF, Schalk G. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci. 2008; 28(46):11830鈥?. CrossRef
    12. Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods. 2005; 148(1):1鈥?8. CrossRef
    13. Szarowski DH, Andersen MD, Retterer S, Spence AJ, Isaacson M, Craighead HG, Turner JN, Shain W. Brain responses to micro-machined silicon devices. Brain Res. 2003; 983(1鈥?):23鈥?5. CrossRef
    14. Hassler C, Boretius T, Stieglitz T. Polymers for neural implants. J Polym Sci Pol Phys. 2011; 49(1):18鈥?3. CrossRef
    15. Hsu JM, Rieth L, Normann RA, Tathireddy P, Solzbacher F. Encapsulation of an integrated neural interface device with parylene C. IEEE T Biomed Eng. 2009; 56(1):23鈥?. CrossRef
    16. Hasseler C, von Metzen RP, Ruther P, Stieglitz T. Characterization of parylene C as an encapsulation material for implanted neural prostheses. J Biomed Mater Res B Appl Biomater. 2010; 93(1):266鈥?4.
    17. Rubehn B, Bosman C, Oostenveld R, Fries P, Stieglitz T. A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng. 2009; 6(3):0360鈥?. CrossRef
    18. Min KS, Lee CJ, Jun SB, Kim J, Lee SE, Shin J, Chang JW, Kim SJ. A Liquid crystal polymer-based neuromodulation system: An application on animal model of neuropathic pain. Neuromodulation. 2014; 17(2):160鈥?. CrossRef
    19. Schendel AA, Thongpang S, Brodnick SK, Richner TJ, Lindevig BD, Krugner-Higby L, Williams JC. A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices. J Neurosci Methods. 2013; 218(1):121鈥?0. CrossRef
    20. Chou N, Yoo S, Kim S. A largely deformable surface type neural electrode array based on PDMS. IEEE T Neural Syst Rehabil Eng. 2013; 21(4):544鈥?3. CrossRef
    21. Rodger DC, Fong AJ, Li W, Ameri H, Ahuja AK, Gutierrez C, Lavrov I, Zhong H, Menon PR, Meng E, Burdick JW, Roy RR, Edgerton VR, Weiland JD, Humayun MS, Tai YC. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens Actuators B Chem. 2008; 132(2):449鈥?0. CrossRef
    22. Rodriguez FJ, Ceballos D, Schuettler M, Valero A, Valderrama E, Stieglitz T, Navarro X. Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods. 2000; 98(2):105鈥?8. CrossRef
    23. Zariffa J, Nagai MK, Daskalakis ZJ, Popovic MR. Influence of the number and location of recording contacts on the selectivity of a nerve cuff electrode. IEEE T Neural Syst Rehabil Eng. 2009; 17(5):420鈥?7. CrossRef
    24. Guo L, Guvanasen GS, Liu X, Tuthill C, Nichols TR, Deweerth SP. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE T Biomed Circuits Syst. 2012; 7(1):1鈥?0. CrossRef
    25. Rousche PJ, Pellinen DS, Pivin DP, Williams JC, Vetter RJ, Kipke DR. Flexible polyimide-based intracortical electrode arrays with bioacive capability. IEEE T Biomed Eng. 2001; 48(3):361鈥?1. CrossRef
    26. Normann RA, Warren DJ, Ammermuller J, Fernandez E, Guillory S. High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays. Vision Res. 2001; 41(10鈥?1):1261鈥?5. CrossRef
    27. Normann RA, Maynard EM, Rousche PJ, Warren DJ. A neural interface for a cortical vision prosthesis. Vision Res. 1999; 39(15):2577鈥?7. CrossRef
    28. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006; 442(7099):164鈥?1. CrossRef
    29. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012; 485(7398):372鈥?. CrossRef
    30. Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for self-feeding. Nature. 2008; 453(7198):1098鈥?01. CrossRef
    31. Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV. A highperformance brain-computer interface. Nature. 2006; 442(7099): 195鈥?. CrossRef
    32. Strumwasser F. Long-term recording from single neurons in brain of unrestrained mammals. Science. 1958; 127(3296):469鈥?0. CrossRef
    33. Nicolelis MA, Ghazanfar AA, Faggin BM, Votaw S, Oliveira LM. Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron. 1997; 18(4):529鈥?7. CrossRef
    34. Nicolelis MAL, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci USA. 2003; 100(19):11041鈥?. CrossRef
    35. Williams JC, Rennaker RL, Kipke DR. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res Brain Res Protoc. 1999; 4(3):303鈥?3. CrossRef
    36. McNaughton BL, O鈥橩eefe J, Barnes CA. The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system for multiple unit records. J Neurosci Methods. 1983; 8(4):391鈥?. CrossRef
    37. Yuen TG, Agnew WF. Histological evaluation of polyesterimideinsulated gold wires in brain. Biomaterials. 1995; 16(12):951鈥?. CrossRef
    38. Liu X, McCreery DB, Carter RR, Bullara LA, Yuen TGH, Agnew WF. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE T Rehabil Eng. 1999; 7(3):315鈥?6. CrossRef
    39. Buzs谩ki G. Large-scale recording of neuronal ensembles. Nature Neurosci. 2004; 7(5):446鈥?1. CrossRef
    40. Wise KD, Angell JB, Starr A. An Integrated-Circuit Approach to Extracellular Microelectrodes. IEEE T. Biomed Eng. 1970; 17(3):238鈥?7. CrossRef
    41. Najafi K, Wise KD, Mochizuki T. A high-yield IC-compatible multichannel recording array. IEEE T Electron Devices. 1985; 32(7):1206鈥?1. CrossRef
    42. Najafi K, Wise KD. An implantable multielectrode array with on-chip signal processing. IEEE J Solid-State Circuits. 1986; 21(6):1035鈥?4. CrossRef
    43. BeMent SL, Wise KD, Anderson DJ, Najafi K, Drake KL. Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE T Biomed Eng. 1986; 33(2):230鈥?1. CrossRef
    44. Anderson DJ, Najafi K, Tanghe SJ, Evans DA, Levy KL, Hetke JF, Xue X, Zappia JJ, Wise KD. Batch fabricated thin-film electrodes for stimulation of the central auditory system. IEEE T Biomed Eng. 1989; 36(7):693鈥?04. CrossRef
    45. Najafi K, Hetke JF. Strength characterization of silicon microprobes in neurophysiological tissues. IEEE T Biomed Eng. 1990; 37(5):474鈥?1. CrossRef
    46. Tanghe SJ, Wise KD. A 16-channel CMOS neural stimulating array. IEEE J Solid-State Circuits. 1992; 27(12):1819鈥?5. CrossRef
    47. Kim C, Wise KD. A 64-site multishank CMOS low-profile neural stimulating probe. IEEE J Solid-State Circuits. 1996; 31(9):1230鈥?. CrossRef
    48. Yoon TH, Hwang EJ, Shin DY, Park SI, Oh SJ, Jung SC, Shin HC, Kim SJ. A micromachined silicon depth probe for multichannel neural recording. IEEE T Biomed Eng. 2000; 47(8):1082鈥? CrossRef
    49. Oh SJ, Song JK, Kim SJ. Neural interface with a silicon neural probe in the advancement of microtechnology. Biotechnol Bioprocess Eng. 2003; 8(4):252鈥? CrossRef
    50. Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE T Biomed Eng. 1991; 38(8):758鈥?8. CrossRef
    51. Jones KE, Campbell PK, Normann RA. A glass/silicon composite intracortical electrode array. Ann Biomed Eng. 1992; 20(4):423鈥?7. CrossRef
    52. Negi S, Bhandari R, Rieth L, Solzbacher F. Effect of sputtering pressure on pulsed-DC sputtered iridium oxide films. Sens Actuators B Chem. 2009; 137(1):370鈥?. CrossRef
    53. Negi S, Bhandari R, Rieth L, Van Wagenen R, Solzbacher F. Neural electrode degradation from continuous electrical stimulation: Comparison of sputtered and activated iridium oxide. J Neurosci Methods. 2010; 186(1):8鈥?7. CrossRef
    54. Bhandari R, Negi S, Rieth L, Normann RA, Solzbacher F. A novel masking method for high aspect ratio penetrating microelectrode arrays. J Micromech Microeng. 2009; doi:10.1088/0960-1317/19/3/035004 .
    55. Yoo JM, Song JI, Tathireddy P, Solzbacher F, Rieth LW. Hybrid laser and reactive ion etching of Parylene-C for deinsulation of a Utah electrode array. J Micromech Microeng. 2012; doi:10.1088/0960-1317/22/10/105036 .
    56. Branner A, Stein RB, Normann RA. Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J Neurophysiol. 2001; 85(4):1585鈥?4.
    57. Branner A, Stein RB, Fernandez E, Aoyagi Y, Normann RA. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE T Biomed Eng. 2004; 51(1):146鈥?7. CrossRef
    58. Wark HAC, Sharma R, Mathews KS, Fernandez E, Yoo J, Christensen B, Tresco P, Rieth L, Solzbacher F, Normann RA, Tathireddy P. A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J Neural Eng. 2013; 10(4):0450鈥?. CrossRef
    59. Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F. Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices. 2008; 11(2):453鈥?6. CrossRef
    60. Sharma A, Rieth L, Tathireddy P, Harrison R, Oppermann H, Klein M, T枚pper M, Jung E, Normann R, Clark G, Solzbacher F. Evaluation of the packaging and encapsulation reliability in fully integrated, fully wireless 100 channel Utah Slant Electrode Array (USEA): Implications for long term functionality. Sens Actuators A Phys. 2012; 188:167鈥?2. CrossRef
    61. Bai Q, Wise KD, Anderson DJ. A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans Biomed Eng. 2000; 47(3):281鈥?. CrossRef
    62. Yao Y, Gulari MN, Wiler JA, Wise KD. A Microassembled Low-Profile Three-dimensional microelectrode array for neural prosthesis applications. J Microelectromech Syst. 2007; 16(4):977鈥?8. CrossRef
    63. Perlin GE, Wise KD. An ultra compact integrated front end for wireless neural recording microsystems. J Microelectromechanical Syst. 2010; 19(6):1409鈥?1. CrossRef
    64. Merriam ME, Dehmel S, Srivannavit O, Shore SE, Wise KD. A 3-D 160-site microelectrode array for cochlear nucleus mapping. IEEE Trans Biomed Eng. 2011; 58(2):397鈥?03. CrossRef
    65. Aarts AAA, Srivannavit O, Wise KD, Yoon E, Puers R, Van Hoof C, Neves HP. Fabrication technique of a compressible biocompatible interconnect using a thin film transfer process. J Micromech Microeng. 2011; 21:doi:10.1088/0960-1317/21/7/074012 .
    66. Bhandari R, Negi S, Rieth L, Normann RA, Solzbacher F. A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prostheses. Sens Actuators A Phys. 2008; 145鈥?46(1鈥?):123鈥?0. CrossRef
    67. Rakwal D, Heamawatanachai S, Tathireddy P, Solzbacher F, Bamberg E. Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining. Microsyst Technol. 2009; 15(5):789鈥?7. CrossRef
    68. Sharma R, Tathireddy P, Lee S, Rieth L, Bamberg E, Dorval A, Normann RA, Solzbacher F. Application-specific customizable architectures of Utah neural interfaces. Procedia Eng. 2011; 25:1016鈥?. CrossRef
    69. Byun D, Cho SJ, Kim S. Fabrication of a flexible penetrating microelectrode array for use on curved surfaces of neural tissues. J Micromech Microeng. 2013; 23:doi:10.1088/0960-1317/23/12/125010 .
    70. Kim DH, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim YS, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang Y, Hwang KC, Zakin MR, Litt B, Rogers JA. Dissolvable films of silk fibroin for ultrathin conformal biointegrated electronics. Nat Mater. 2010; 9(6):511鈥?. CrossRef
    71. Lacour SP, Benmerah S, Tarte E, Fitzgerald J, Serra J, McMahon S, Fawcett J, Graudejus O, Yu Z, Morrison B 3rd. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med Biol Eng Comput. 2010; 48(10):945鈥?4. CrossRef
    72. Rousche PJ, Pellinen DS, Pivin Jr. DP, Williams JC, Vetter RJ, Kipke DR. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng. 2001; 48(3):361鈥?0. CrossRef
    73. Mercanzini A, Cheung K, Buhl DL, Boers M, Maillard A, Colin P, Bensadoun JC, Bertsch A, Renaud P. Demonstration of cortical recording using novel flexible polymer neural probes. Sens Actuators A Phys. 2008; 143(1):90鈥?. CrossRef
    74. Tooker A, Tolosa V, Shah KG, Sheth H, Felix S, Delima T, Pannu S. Polymer neural interface with dual-sided electrodes for neural stimulation and recording. Conf Proc IEEE Eng Med Biol Soc. 2012; 2012:5999鈥?002. doi: 10.1109/EMBC.2012.6347361 .
    75. Kim BJ, Kuo JTW, Hara SA, Lee CD, Yu L, Gutierrez CA, Hoang TQ, Pikov V, Meng E. 3D Parylene sheath neural probe for chronic recordings. J Neural Eng. 2013; 10(4):0450鈥?.
    76. Wu F, Tien L, Chen F, Kaplan D, Berke J, Yoon E. A multishank silk-backed parylene neural probe for reliable chronic recording. Conf Proc Transducer Eurosens. 2013; doi:10.1109/Transducers.2013.6626910 .
    77. Lee SE, Jun SB, Lee HJ, Kim Jd, Lee SW, Im C, Shin HC, Chang JW, Kim SJ. A flexible depth probe using liquid crystal polymer. IEEE T Biomed Eng. 2012; 59(7):2058鈥?4.
    78. Royer S, Zemelman BV, Barbic M, Losonczy A, Buzs谩ki G, Magee JC. Multi-array silicon probes with integrated optical fibers: Light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur J Neurosci. 2010; 31(12):2279鈥?1. CrossRef
    79. Im M, Cho IJ, Wu F, Wise KD, Yoon E. Neural probes integrated with optical mixer/splitter waveguides and multiple stimulation sites. Conf Proc IEEE Micro Electro Mech Syst. 2011; doi:10.1109/MEMSYS.2011.5734609 .
    80. Wang J, Wagner F, Borton DA, Zhang J, Ozden I, Burwell RD, Nurmikko AV, Van Wagenen R, Diester I, Deisseroth K. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J Neural Eng. 2012; 9(1):0160鈥?. CrossRef
    81. Kim TI, McCall JG, Jung YH, Huang X, Siuda ER, Li Y, Song J, Song YM, Pao HA, Kim R-H, Lu C, Lee SD, Song IS, Shin G, Al-Hasani R, Kim S, Tan MP, Huang Y, Omenetto FG, Rogers JA, Bruchas MR. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science. 2013; 340(6129):211鈥? CrossRef
    82. Metz S, Holzer R, Renaud P. Polyimide-based microfluidic devices. Lab Chip. 2001; 1(1):29鈥?4. CrossRef
    83. Metz S, Jiguet S, Bertsch A, Renaud P. Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique. Lab Chip. 2004; 4(2):114鈥?0. CrossRef
    84. Ziegler D, Suzuki T, Takeuchi S. Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of parylene. J Microelectromech Syst. 2006; 15(6):1477鈥?2. CrossRef
    85. Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T. Parylene flexible neural probes integrated with microfluidic channels. Lab Chip. 2005; 5(5):519鈥?3. CrossRef
  • 作者单位:Namsun Chou (1)
    Donghak Byun (1)
    Sohee Kim (1) (2)

    1. School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
    2. Department of Medical System Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
  • ISSN:2093-985X
文摘
Due to the high spatial selectivity and resolution with high accessibility to single neurons, penetrating neural electrodes have been used for neuronal recording or stimulation in specific applications although they are invasive, thus inducing more inflammatory response and damages to the tissue, compared to non-penetrating electrodes. Penetrating electrodes are mainly made up of stiff materials such as metal wires, silicon, or glass. Compared to microwire electrodes, siliconbased penetrating electrodes are fabricated in precise designs and dimensions, often in forms of array with higher number of independent channels. Although precise 2-D and 3-D electrode structures are used in many applications, efforts to make them more biocompatible and long-lasting have been reported recently. On the other hand, soft materials such as polymers have also been lately used in penetrating electrodes to accommodate their flexibility and mechanical properties that are more favorable to neural tissues, minimizing adverse effects on tissues. Polymer-based electrodes are promising for future applications where better biocompatibility is required although technical hurdles in using them in long term have to be overcome.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700