H-bonding driven assembly of colloidal Au nanoparticles on nanostructured poly(styrene-b-ethylene oxide) block copolymer templates
详细信息    查看全文
  • 作者:A. Evelyn Di Mauro (1)
    Vincenzo Villone (1) (2)
    Chiara Ingrosso (1)
    Michela Corricelli (2)
    Lorea Oria (3)
    Francesc Pérez-Murano (3)
    Angela Agostiano (1) (2)
    Marinella Striccoli (1)
    M. L. Curri (1)
  • 刊名:Journal of Materials Science
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:49
  • 期:15
  • 页码:5246-5255
  • 全文大小:
  • 参考文献:1. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226-3239 CrossRef
    2. Fanizza E, Altomare M, Di Mauro AE, Del Sole T, Corricelli M, Depalo N, Comparelli R, Agostiano A, Striccoli M, Curri ML (2012) Polyelectrolyte multilayers as a platform for luminescent nanocrystal patterned assemblies. Langmuir 28:5964-974 CrossRef
    3. Ingrosso C, Sardella E, Keller S, Dohn S, Striccoli M, Agostiano A, Boisen A, Curri ML (2010) Surface functionalization of epoxy-resist-based microcantilevers with iron oxide nanocrystals. Adv Mater 22:3288-292 ma.200904013" target="_blank" title="It opens in new window">CrossRef
    4. Kim Y, Ingrosso C, Fakhfouri V, Striccoli M, Agostiano A, Curri ML, Brugger J (2009) Inkjet-printed multicolor arrays of highly luminescent nanocrystal-based nanocomposites. Small 5:1051-057 mll.200801315" target="_blank" title="It opens in new window">CrossRef
    5. Pileni MP (2001) Nanocrystal self-assemblies: fabrication and collective properties. J Phys Chem B 105:3358-371 CrossRef
    6. Yan G, Zhiyong T (2011) Design and application of inorganic nanoparticle superstructures: current status and future challenges. Small 7:2133-146 mll.201100474" target="_blank" title="It opens in new window">CrossRef
    7. Kinge S, Crego-Calama M, Reinhoudt DN (2008) Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 9:20-2 CrossRef
    8. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389-58 CrossRef
    9. Innocenzi P, Kidchob T, Falcaro PM (2008) Patterning techniques for mesostructured films. Chem Mater 20:607-14 m071784j" target="_blank" title="It opens in new window">CrossRef
    10. Kao J, Thorkelsson K, Bai P, Rancatore BJ, Xu T (2013) Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. Chem Soc Rev 42:2654-678 CrossRef
    11. Haryono A, Binder WY (2006) Controlled arrangement of nanoparticle arrays in block-copolymer domains. Small 2:600-11 mll.200500474" target="_blank" title="It opens in new window">CrossRef
    12. Curri ML, Comparelli R, Striccoli M, Agostiano A (2010) Emerging methods for fabricating functional structures by patterning and assembling engineered nanocrystals. PhysChemChemPhys 12:11197-1207
    13. Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591-605 CrossRef
    14. Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969-985 CrossRef
    15. Pavan MJ, Shenhar R (2011) Two-dimensional nanoparticle organization using block copolymer thin films as templates. J Mater Chem 21:2028-040 m02853c" target="_blank" title="It opens in new window">CrossRef
    16. Xu J, Park S, Wang S, Russell TP, Ocko BM, Checco A (2010) Directed self-assembly of block copolymers on two-dimensional chemical patterns fabricated by electro-oxidation nanolithography. Adv Mater 22:2268-272 ma.200903640" target="_blank" title="It opens in new window">CrossRef
    17. Oria L, Ruiz de Luzuriaga A, Alduncin JA, Pérez-Murano F (2013) Polystyrene as a brush layer for directed self-assembly of block co-polymers. Microelectron Eng 110:234-40 mee.2012.12.006" target="_blank" title="It opens in new window">CrossRef
    18. Ramanathan M, Kilbey SM, Ji Q, Hill JP, Ariga K (2012) Materials self-assembly and fabrication in confined spaces. J Mater Chem 22:10389-0405 m16629a" target="_blank" title="It opens in new window">CrossRef
    19. Minelli C, Hinderling C, Heinzelmann H, Pugin R, Liley M (2005) Micrometer-long gold nanowires fabricated using block copolymer templates. Langmuir 21:7080-082 CrossRef
    20. Thiruvengadathan R, Korampally V, Ghosh A, Chanda N, Gangopadhyay K, Gangopadhyay S (2013) Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Rep Prog Phys 76:066501 CrossRef
    21. Tercjak A, Gutierrez J, Mondragon G, Mondragon I (2011) Cellulose nanocrystals and au nanoparticles well-dispersed in a poly(styrene- / b-ethylene oxide) block copolymer matrix. J Phys Chem C 115:22180-2185 CrossRef
    22. Aissou K, Fleury G, Pecastaings G, Alnasser T, Mornet S, Goglio G, Hadziioannou G (2011) Hexagonal-to-cubic phase transformation in composite thin films induced by FePt nanoparticles located at PS/PEO interfaces. Langmuir 27:14481-4488 CrossRef
    23. Ploshnik E, Langner KM, Halevi A, Ben-Lulu M, Axel HE, Müller AHE, Fraaije JGEM, Sevink GJA, Shenhar R (2013) Hierarchical structuring in block copolymer nanocomposites through two phase-separation processes operating on different time scales. Adv Funct Mater 23:4215-226 m.201300091" target="_blank" title="It opens in new window">CrossRef
    24. Di Mauro AE, Striccoli M, Depalo N, Fanizza E, Cano L, Ingrosso C, Agostiano A, Curri ML, Tercjak A (2013) Selective confinement of oleylamine capped Au nanoparticles in self-assembled PS- / b-PEO diblock copolymer templates. Soft Matter. doi:10.1039/C3SM52596A
    25. Etxeberria H, Fernandez R, Zalakain I, Mondragon I, Eceiza A, Kortaberria G (2014) Effect of CdSe nanoparticle addition on nanostructuring of PS- / b-P4VP copolymer via solvent vapor exposure. J Colloid Interface Sci 416:25-9 CrossRef
    26. Darling SB, Yufa NA, Cisse AL, Bader SD, Sibener SJ (2005) Self-organization of fept nanoparticles on photochemically modified diblock copolymer templates. Adv Mater 17:2446-450 ma.200500960" target="_blank" title="It opens in new window">CrossRef
    27. Niu S, Saraf RF (2007) Selective assembly of nanoparticles on block copolymer by surface modification. Nanotechnology 18:125607 CrossRef
    28. Lee W, Lee SY, Zhang X, Rabin O, Briber RM (2013) Hexagonally ordered nanoparticles templated using a block copolymer film through Coulombic interactions. Nanotechnology 24:045305 CrossRef
    29. Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 9:2301-309 CrossRef
    30. Zheng J, Petty JT, Dickson RM (2003) Luminescence tribochromism and bright emission in gold(I) thiouracilate complexes. J Am Chem Soc 125:7780-781 CrossRef
    31. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem Eur J 8:28-5 CrossRef
    32. Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212-217 CrossRef
    33. Lin Z, Kim DH, Wu X, Boosahda L, Stone D, LaRose L, Russel TP (2002) A rapid route to arrays of nanostructures in thin films. Adv Mater 14:1373-376 CrossRef
    34. Tercjak A, Gutierrez J, Mondragon I (2011) Conductive properties of photoluminescent Au/Ps-b-PEO inorganic/organic hybrids containing nematic liquid crystals. J Phys Chem C 115:1643-648 CrossRef
    35. Neto C, James M, Telford AM (2009) On the composition of the top layer of microphase separated thin PS-PEO films. Macromolecules 42:4801-808 ma900690e" target="_blank" title="It opens in new window">CrossRef
    36. Huang L, Yuan H, Zhang D, Zhang Z, Guo J, Ma J (2004) Controlled microphase separated morphology of block polymer thin film and an approach to prepare inorganic nanoparticles. Appl Surf Sci 225:39-6 CrossRef
    37. Ghoshal T, Shaw MT, Bolger CT, Holmes JD, Morris MA (2012) A general method for controlled nanopatterning of oxide dots: a microphase separated block copolymer platform. J Mater Chem 22:12083-2089 m30468f" target="_blank" title="It opens in new window">CrossRef
    38. He WN, Xu JT (2012) Crystallization assisted self-assembly of semicrystalline block copolymers. Prog Pol Sci 37:1350-400 msci.2012.05.002" target="_blank" title="It opens in new window">CrossRef
    39. Tran-Ba KH, Finley JJ, Higgins DA, Ito T (2012) Single-molecule tracking studies of millimeter-scale cylindrical domain alignment in polystyrene–poly(ethylene oxide) diblock copolymer films induced by solvent vapor penetration. J Phys Chem Lett 3:1968-973 CrossRef
    40. Lee JW, Lee C, Choi SY, Kim SH (2010) Block copolymer–surfactant complexes in thin films for multiple usages from hierarchical structure to nano-objects. Macromolecules 43:442-47 ma901947p" target="_blank" title="It opens in new window">CrossRef
    41. Mendoza C, Pietsch T, Gutmann JS, Jehnichen D, Gindy N, Fahmi A (2009) Block copolymers with gold nanoparticles: correlation between structural characteristics and mechanical properties. Macromolecules 42:1203-211 ma8020954" target="_blank" title="It opens in new window">CrossRef
    42. Mendoza C, Gindy N, Gutmann JS, Fromsdorf A, Forster S, Fahmi A (2009) In situ synthesis and alignment of au nanoparticles within hexagonally packed cylindrical domains of diblock copolymers in bulk. Langmuir 25:9571-578 CrossRef
    43. Hunter CH, Ihekwaba N, Misuraca MC, Segarra-Maset MD, Turega SM (2009) Cooperativity in multiply H-bonded complexes. Chem Comm 26:3964-966 CrossRef
    44. Schmidt AR, Nguyen NDT, Leopold MC (2013) Nanoparticle film assemblies as platforms for electrochemical biosensing—factors affecting the amperometric signal enhancement of hydrogen peroxide. Langmuir 29:4574-583 CrossRef
    45. Maldonado S, Knapp D, Lewis NS (2008) Near-ideal photodiodes from sintered gold nanoparticle films on methyl-terminated Si(111) surfaces. J Am Chem Soc 130:3300-301 CrossRef
    46. Ko Y, Baek H, Kim Y, Yoon M, Cho J (2013) Hydrophobic nanoparticle-based nanocomposite films using in situ ligand exchange layer-by-layer assembly and their nonvolatile memory applications. ACS Nano 7:143-53 CrossRef
    47. Schmid G, Simon U (2005) Gold nanoparticles: assembly and electrical properties in 1- dimensions. Chem Commun 6:697-10 CrossRef
    48. Schmid G, Reuter T, Simon U, Noyong M, Blech K, Santhanam V, J?ger D, Slomka H, Lüth L, Lepsa MI (2008) Generation and electrical contacting of gold quantum dots. Coll Polym Sci 286:1029-037 CrossRef
    49. Sun Z, Kim DH, Wolkenhauer M, Bumbu GG, Knoll W, Gutmann JS (2006) Synthesis and photoluminescence of titania nanoparticle arrays templated by block-copolymer thin films. ChemPhysChem 7:370-78 CrossRef
    50. Yuan J, Hajebifard A, George C, Berini P, Zou S (2013) Ordered gold nanoparticle arrays on glass and their characterization. J Colloid Interface Sci 410:1-0 CrossRef
  • 作者单位:A. Evelyn Di Mauro (1)
    Vincenzo Villone (1) (2)
    Chiara Ingrosso (1)
    Michela Corricelli (2)
    Lorea Oria (3)
    Francesc Pérez-Murano (3)
    Angela Agostiano (1) (2)
    Marinella Striccoli (1)
    M. L. Curri (1)

    1. CNR-IPCF Bari-Division c/o Chemistry Department, University “Aldo Moro-of Bari, Bari, Italy
    2. Chemistry Department, University “Aldo Moro-of Bari, Via Orabona 4, 70126, Bari, Italy
    3. Microelectronic Institute of Barcelona (IMB-CNM, CSIC), Bellaterra, 08913, Barcelona, Spain
  • ISSN:1573-4803
文摘
A facile, cost-effective, and general solution-based “bottom-up-method for nanopatterning dense arrays of colloidal Au nanoparticles (NPs) has been developed. The organization of the NPs has been successfully achieved onto a microphase-separated poly(styrene-block-ethylene oxide) (PS-b-PEO) block copolymer (BCP) thin film which acts as structural template. The NP assembly process occurs by incubating the BCP films in dispersions of the ex situ synthesized Au NPs, not requiring any chemical pre-treatment or activation step of the copolymer surface, and has demonstrated to be distinctively controlled by multiple, cooperative, and selective hydrogen bonding interactions between hydroxyl functionalities of the capping molecules coating the Au NP surface and the hydrophilic PEO block. The effect of incubation time and concentration of NPs on the selectivity of the assembly has been investigated by atomic force and scanning electron microscopy. The results show that the BCP pattern is preserved after decoration with the Au NPs. The fabricated nanopatterns are good candidates for nanostructure integration in sensing and optoelectronic applications, as well as in memory devices and photonic systems. Moreover, the proposed immobilization protocol represents a model system that can be extended to other NPs having different compositions and surface chemistries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700