Anti-fouling Coatings of Poly(dimethylsiloxane) Devices for Biological and Biomedical Applications
详细信息    查看全文
  • 作者:Hongbin Zhang ; Mu Chiao
  • 关键词:Anti ; fouling ; Surface modification ; Poly(dimethylsiloxane) (PDMS) ; Biomedical devices
  • 刊名:Journal of Medical and Biological Engineering
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:35
  • 期:2
  • 页码:143-155
  • 全文大小:831KB
  • 参考文献:1.Abbasi, F., Mirzadeh, H., & Simjoo, M. (2006). Hydrophilic interpenetrating polymer networks of poly(dimethyl siloxane) (PDMS) as biomaterial for cochlear implants. Journal of Biomaterials Science, Polymer Edition, 17, 341鈥?55.CrossRef
    2.Siproudhis, L., Morcet, J., & Laine, F. (2007). Elastomer implants in faecal incontinence: A blind, randomized placebo-controlled study. Alimentary Pharmacology & Therapeutics, 25, 1125鈥?132.CrossRef
    3.Abbasi, F., Mirzadeh, H., & Katbab, A. A. (2001). Modification of polysiloxane polymers for biomedical applications: A review. Polymer International, 50, 1279鈥?287.CrossRef
    4.Weibel, D. B., & Whitesides, G. M. (2006). Applications of microfluidics in chemical biology. Current Opinion in Chemical Biology, 10, 584鈥?91.CrossRef
    5.Kartalov, E. P., Anderson, W. F., & Scherer, A. (2006). The analytical approach to polydimethylsiloxane microfluidic technology and its biological applications. Journal of Nanoscience and Nanotechnology, 6, 2265鈥?277.CrossRef
    6.Wu, M. H., Huang, S. B., & Lee, G. B. (2010). Microfluidic cell culture systems for drug research. Lab on a Chip, 10, 939鈥?56.CrossRef
    7.Pirmoradi, F. N., Jackson, J. K., Burt, H. M., & Chiao, M. (2011). A magnetically controlled MEMS device for drug delivery: Design, fabrication, and testing. Lab on a Chip, 11, 3072鈥?080.CrossRef
    8.Pirmoradi, F. N., Jackson, J. K., Burt, H. M., & Chiao, M. (2011). On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab on a Chip, 11, 2744鈥?752.CrossRef
    9.Ng, J. M. K., Gitlin, I., Stroock, A. D., & Whitesides, G. M. (2002). Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis, 23, 3461鈥?473.CrossRef
    10.Wong, I., & Ho, C. M. (2009). Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluidics and Nanofluidics, 7, 291鈥?06.CrossRef
    11.Makamba, H., Kim, J. H., Lim, K., Park, N., & Hahn, J. H. (2003). Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis, 24, 3607鈥?619.CrossRef
    12.Zhou, J., Ellis, A. V., & Voelcker, N. H. (2010). Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis, 31, 2鈥?6.CrossRef
    13.Tu, Q., Wang, J. C., Zhang, Y., Liu, R., Liu, W., Ren, L., et al. (2012). Surface modification of poly(dimethylsiloxane) and its applications in microfluidics-based biological analysis. Reviews in Analytical Chemistry, 31, 177鈥?92.CrossRef
    14.Zhou, J., Khodakov, D. A., Ellis, A. V., & Voelcker, N. H. (2012). Surface modification for PDMS-based microfluidic devices. Electrophoresis, 33, 89鈥?04.CrossRef
    15.Banerjee, I., Pangule, R. C., & Kane, R. S. (2011). Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23, 690鈥?18.CrossRef
    16.Blaszykowski, C., Sheikh, S., & Thompson, M. (2012). Surface chemistry to minimize fouling from blood-based fluids. Chemical Society Reviews, 41, 5599鈥?612.CrossRef
    17.Kwak, D., Wu, Y., & Horbett, T. A. (2005). Fibrinogen and von Willebrand鈥檚 factor adsorption are both required for platelet adhesion from sheared suspensions to polyethylene preadsorbed with blood plasma. Journal of Biomedical Materials Research, Part A, 74A, 69鈥?3.CrossRef
    18.Bohnert, J. L., Horbett, T. A., Ratner, B. D., & Royce, F. H. (1988). Adsorption of proteins from artificial tear solutions to contact lens materials. Investigative Ophthalmology & Visual Science, 29, 362鈥?73.
    19.Fonn, D. (2007). Targeting contact lens induced dryness and discomfort: What properties will make lenses more comfortable. Optometry and Vision Science, 84, 279鈥?85.CrossRef
    20.Santos, L., Rodrigues, D., Lira, M., Oliveira, M. E. R., Oliveira, R., Vilar, E. Y. P., & Azeredo, J. (2007). The influence of surface treatment on hydrophobicity, protein adsorption and microbial colonisation of silicone hydrogel contact lenses. Contact Lens Anterior Eye, 30, 183鈥?88.CrossRef
    21.Liu, J., & Lee, M. L. (2006). Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. Electrophoresis, 27, 3533鈥?546.CrossRef
    22.Chapman, R. G., Ostuni, E., Liang, M. N., Meluleni, G., Kim, E., Yan, L., et al. (2001). Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir, 17, 1225鈥?233.CrossRef
    23.Vermonden, T., Censi, R., & Hennink, W. E. (2012). Hydrogels for protein delivery. Chemical Reviews, 112, 2853鈥?888.CrossRef
    24.Zhang, H., Wang, L., Song, L., Niu, G., Cao, H., Wang, G., et al. (2011). Controllable properties and microstructure of hydrogels based on crosslinked poly(ethylene glycol) diacrylates with different molecular weights. Journal of Applied Polymer Science, 121, 531鈥?40.CrossRef
    25.Zhang, H., Hao, R., Ren, X., Yu, L., Yang, H., & Yu, H. (2013). PEG/lecithin-liquid-crystalline composite hydrogels for quasi-zero-order combined release of hydrophilic and lipophilic drugs. RSC Adv., 3, 22927鈥?2930.CrossRef
    26.Goddard, J. M., & Hotchkiss, J. H. (2007). Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science, 32, 698鈥?25.CrossRef
    27.Elbert, D. L., & Hubbell, J. A. (1996). Surface treatments of polymers for biocompatibility. Annual Review of Materials Science, 26, 365鈥?94.CrossRef
    28.Krishnan, S., Weinman, C. J., & Ober, C. K. (2008). Advances in polymers for anti-biofouling surfaces. Journal of Materials Chemistry, 18, 3405鈥?413.CrossRef
    29.Lee, S., & V枚r枚s, J. (2005). An aqueous-Based surface modification of poly(dimethylsiloxane) with poly(ethylene glycol) to prevent biofouling. Langmuir, 21, 11957鈥?1962.CrossRef
    30.Makamba, H., Hsieh, Y. Y., Sung, W. C., & Chen, S. H. (2005). Stable permanently hydrophilic protein-Resistant thin-film coatings on poly(dimethylsiloxane) substrates by electrostatic self-assembly and chemical cross-linking. Analytical Chemistry, 77, 3971鈥?978.CrossRef
    31.Tessmar, J. K., & G枚pferich, A. M. (2007). Customized PEG-derived copolymers for tissue-engineering applications. Macromolecular Bioscience, 7, 23鈥?9.CrossRef
    32.Amiji, M., & Park, K. (1992). Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Biomaterials, 13, 682鈥?92.CrossRef
    33.Hellmich, W., Regtmeier, J., Duong, T. T., Ros, R., Anselmetti, D., & Ros, A. (2005). Poly (oxyethylene) based surface coatings for poly (dimethylsiloxane) microchannels. Langmuir, 21, 7551鈥?557.CrossRef
    34.Wu, M. H., Urban, J. P. G., Cui, Z., & Cui, Z. F. (2006). Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture. Biomedical Microdevices, 8, 331鈥?40.CrossRef
    35.Wu, Z., & Hjort, K. (2009). Surface modification of PDMS by gradient-induced migration of embedded Pluronic. Lab on a Chip, 9, 1500鈥?503.CrossRef
    36.Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., & Whitesides, G. M. (2005). Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 105, 1103鈥?170.CrossRef
    37.Ulman, A. (1996). Formation and structure of self-assembled monolayers. Chemical Reviews, 96, 1533鈥?554.CrossRef
    38.Jon, S., Seong, J., Khademhosseini, A., Tran, T. N. T., Laibinis, P. E., & Langer, R. (2003). Construction of nonbiofouling surfaces by polymeric self-assembled monolayers. Langmuir, 19, 9989鈥?993.CrossRef
    39.Papra, A., Bernard, A., Juncker, D., Larsen, N. B., Michel, B., & Delamarche, E. (2001). Microfluidic networks made of poly(dimethylsiloxane), Si, and Au coated with polyethylene glycol for patterning proteins onto surfaces. Langmuir, 17, 4090鈥?095.CrossRef
    40.Papra, A., Gadegaard, N., & Larsen, N. B. (2001). Characterization of ultrathin poly(ethylene glycol) monolayers on silicon substrates. Langmuir, 17, 1457鈥?460.CrossRef
    41.Chen, H., Brook, M. A., & Sheardown, H. (2004). Silicone elastomers for reduced protein adsorption. Biomaterials, 25, 2273鈥?282.CrossRef
    42.Chen, H., Brook, M. A., Chen, Y., & Sheardown, H. (2005). Surface properties of PEO-silicone composites: Reducing protein adsorption. Journal of Biomaterials Science, Polymer Edition, 16, 531鈥?48.CrossRef
    43.Chen, H., Zhang, Z., Chen, Y., Brook, M. A., & Sheardown, H. (2005). Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide). Biomaterials, 26, 2391鈥?399.CrossRef
    44.Guo, D. J., Han, H. M., Wang, J., Xiao, S. J., & Dai, Z. D. (2007). Surface-hydrophilic and protein-resistant silicone elastomers prepared by hydrosilylation of vinyl poly(ethylene glycol) on hydrosilanes-poly(dimethylsiloxane) surfaces. Colloids Surfaces A: Physicochemical and Engineering Aspects, 308, 129鈥?35.CrossRef
    45.Wang, A. J., Feng, J. J., & Fan, J. (2008). Covalent modified hydrophilic polymer brushes onto poly(dimethylsiloxane) microchannel surface for electrophoresis separation of amino acids. Journal of Chromatography A, 1192, 173鈥?79.CrossRef
    46.Yeh, P. Y., Zhang, Z., Lin, M., & Cao, X. (2012). Nonfouling hydrophilic poly(ethylene glycol) engraftment strategy for PDMS/SU-8 heterogeneous microfluidic devices. Langmuir, 28, 16227鈥?6236.CrossRef
    47.Zhang, Z., Feng, X., Luo, Q., & Liu, B. F. (2009). Environmentally friendly surface modification of PDMS using PEG polymer brush. Electrophoresis, 30, 3174鈥?180.CrossRef
    48.Tugulu, S., & Klok, H. A. (2009). Surface modification of polydimethylsiloxane substrates with nonfouling poly(poly(ethylene glycol)methacrylate) brushes. Macromolecular Symposium, 279, 103鈥?09.CrossRef
    49.Martinelli, E., Suffredini, M., Galli, G., Glisenti, A., Pettitt, M. E., Callow, M. E., et al. (2011). Amphiphilic block copolymer/poly(dimethylsiloxane) (PDMS) blends and nanocomposites for improved fouling-release. Biofouling, 27, 529鈥?41.CrossRef
    50.Martinelli, E., Sarvothaman, M. K., Alderighi, M., Galli, G., Mielczarski, E., & Mielczarski, J. A. (2012). PDMS network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. I. Chemistry and stability of the film surface. Journal of Polymer Science Part A: Polymer Chemistry, 50, 2677鈥?686.CrossRef
    51.Jeon, S. I., Lee, J. H., Andrade, J. D., & Degennes, P. G. (1991). Protein-surface interactions in the presence of polyethylene oxide: I. Simplified theory. Journal of Colloid and Interface Science, 142, 149鈥?58.CrossRef
    52.Jeon, S. I., & Andrade, J. D. (1991). Protein-surface interactions in the presence of polyethylene oxide: II. Effect of protein size. Journal of Colloid and Interface Science, 142, 159鈥?66.CrossRef
    53.Szleifer, I. (1997). Protein adsorption on surfaces with grafted polymers: A theoretical approach. Biophysical Journal, 72, 595鈥?12.CrossRef
    54.Szleifer, I. (1997). Polymers and proteins: Interactions at interfaces. Current Opinion in Solid State and Materials Science, 2, 337鈥?44.CrossRef
    55.Wang, R. L. C., Kreuzer, H. J., & Grunze, M. (1997). Molecular conformation and solvation of oligo(ethylene glycol)-terminated self-assembled monolayers and their resistance to protein adsorption. The Journal of Physical Chemistry B, 101, 9767鈥?773.CrossRef
    56.Harder, P., Grunze, M., Dahint, R., Whitesides, G. M., & Laibinis, P. E. (1998). Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. The Journal of Physical Chemistry B, 102, 426鈥?36.CrossRef
    57.Pertsin, A. J., & Grunze, M. (2000). Computer simulation of water near the surface of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir, 16, 8829鈥?841.CrossRef
    58.Wang, R. L. C., Kreuzer, H. J., & Grunze, M. (2000). The interaction of oligo(ethylene oxide) with water: A quantum mechanical study. Physical Chemistry Chemical Physics: PCCP, 2, 3613鈥?622.CrossRef
    59.Zheng, J., Li, L., Tsao, H. K., Sheng, Y. J., Chen, S., & Jiang, S. (2005). Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: A molecular simulation study. Biophysical Journal, 89, 158鈥?66.CrossRef
    60.Herrwerth, S., Eck, W., Reinhardt, S., & Grunze, M. (2003). Factors that determine the protein resistance of oligoether self-assembled monolayers鈥擨nternal hydrophilicity, terminal hydrophilicity, and lateral packing density. Journal of the American Chemical Society, 125, 9359鈥?366.CrossRef
    61.Chen, S., Li, L., Boozer, C. L., & Jiang, S. (2000). Controlled chemical and structural properties of mixed self-assembled monolayers of alkanethiols on Au(111). Langmuir, 16, 9287鈥?293.CrossRef
    62.Chen, S., Yu, F., Yu, Q., He, Y., & Jiang, S. (2006). Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption. Langmuir, 22, 8186鈥?191.CrossRef
    63.Prime, K., & Whitesides, G. (1991). Self-assembled organic monolayers: Model systems for studying adsorption of proteins at surfaces. Science, 252, 1164鈥?167.CrossRef
    64.Prime, K. L., & Whitesides, G. M. (1993). Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system using self-assembled monolayers. Journal of the American Chemical Society, 115, 10714鈥?0721.CrossRef
    65.Currie, E. P. K., Norde, W., & Cohen Stuart, M. A. (2003). Tethered polymer chains: Surface chemistry and their impact on colloidal and surface properties. Advances in Colloid and Interface Science, 100鈥?02, 205鈥?65.CrossRef
    66.Lazos, D., Franzka, S., & Ulbricht, M. (2005). Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths. Langmuir, 21, 8774鈥?784.CrossRef
    67.Leckband, D., Sheth, S., & Halperin, A. (1999). Grafted poly(ethylene oxide) brushes as nonfouling surface coatings. Journal of Biomaterials Science, Polymer Edition, 10, 1125鈥?147.CrossRef
    68.Vermette, P., & Meagher, L. (2003). Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: Relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces, 28, 153鈥?98.CrossRef
    69.Morra, M. (2000). On the molecular basis of fouling resistance. Journal of Biomaterials Science, Polymer Edition, 11, 547鈥?69.CrossRef
    70.Chen, S., Li, L., Zhao, C., & Zheng, J. (2010). Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 51, 5283鈥?293.CrossRef
    71.Zwaal, R. F. A., Comfurius, P., & Van Deenen, L. L. M. (1977). Membrane asymmetry and blood coagulation. Nature, 268, 358鈥?60.CrossRef
    72.Johnston, D. S., Sanghera, S., Pons, M., & Chapman, D. (1980). Phospholipid polymers鈥攕ynthesis and spectral characteristics. Biochimica et Biophysica Acta (BBA)-Biomembranes, 602, 57鈥?9.CrossRef
    73.Hayward, J. A., & Chapman, D. (1984). Biomembrane surfaces as models for polymer design: The potential for haemocompatibility. Biomaterials, 5, 135鈥?42.CrossRef
    74.Bird, R. le R., Hall, B., Chapman, D., & Hobbs, K. E. F. (1988). Material thrombelastography: An assessment of phosphorylcholine compounds as models for biomaterials. Thrombosis Research, 51, 471鈥?83.CrossRef
    75.Seo, J. H., Shibayama, T., Takai, M., & Ishihara, K. (2011). Quick and simple modification of a poly(dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer. Soft Mater, 7, 2968鈥?976.CrossRef
    76.Wang, D., Williams, C. G., Li, Q., Sharma, B., & Elisseef, J. H. (2003). Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Biomaterials, 24, 3969鈥?980.CrossRef
    77.Zhang, Z., Chao, T., Chen, S., & Jiang, S. (2006). Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, 22, 10072鈥?0077.CrossRef
    78.Jiang, S., & Cao, Z. (2010). Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, 22, 920鈥?32.CrossRef
    79.Kuo, W. H., Wang, M. J., Chien, H. W., Wei, T. C., Lee, C., & Tsai, W. B. (2011). Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation. Biomacromolecules, 12, 4348鈥?356.CrossRef
    80.Singh, P. K., Singh, V. K., & Singh, M. (2007). Zwitterionic polyelectrolytes: A review. e-Polymers, 030, 1鈥?4.
    81.Zhang, Z., Vaisocherov谩, H., Cheng, G., Yang, W., Xue, H., & Jiang, S. (2008). Nonfouling behavior of polycarboxybetaine-grafted surfaces: Structural and environmental effects. Biomacromolecules, 9, 2686鈥?692.CrossRef
    82.Ladd, J., Zhang, Z., Chen, S., Hower, J. C., & Jiang, S. (2008). Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules, 9, 1357鈥?361.CrossRef
    83.Vaisocherov谩, H., Yang, W., Zhang, Z., Cao, Z., Cheng, G., Piliarik, M., et al. (2008). Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Analytical Chemistry, 80, 7894鈥?901.CrossRef
    84.Zhang, Z., Chen, S., & Jiang, S. (2006). Dual-functional biomimetic materials: Nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 7, 3311鈥?315.CrossRef
    85.Li, Y., Keefe, A. J., Giarmarco, M., Brault, N. D., & Jiang, S. (2012). Simple and robust approach for passivating and functionalizing surfaces for use in complex media. Langmuir, 28, 9707鈥?713.CrossRef
    86.Keefe, A. J., Brault, N. D., & Jiang, S. (2012). Suppressing surface reconstruction of superhydrophobic PDMS using a superhydrophilic zwitterionic polymer. Biomacromolecules, 13, 1683鈥?687.CrossRef
    87.Bernards, M. T., Cheng, G., Zhang, Z., Chen, S., & Jiang, S. (2008). Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules, 41, 4216鈥?219.CrossRef
    88.Li, G., Xue, H., Gao, C., Zhang, F., & Jiang, S. (2010). Nonfouling polyampholytes from an ion-pair comonomer with biomimetic adhesive groups. Macromolecules, 43, 14鈥?6.CrossRef
    89.Ishihara, K., & Iwasaki, Y. (1998). Reduced protein adsorption on novel phospholipid polymers. Journal of Biomaterials Applications, 13, 111鈥?27.
    90.Ishihara, K., Nomura, H., Mihara, T., Kurita, K., Iwasaki, Y., & Nakabayashi, N. (1998). Why do phospholipid polymers reduce protein adsorption? Journal of Biomedical Materials Research, 39, 323鈥?30.CrossRef
    91.Sheng, Q., Shulten, K., & Pidgeon, C. (1995). Molecular dynamics simulation of immobilized artificial membrane. Journal of Physical Chemistry, 99, 11018鈥?1027.CrossRef
    92.Ueda, T., Oshida, H., Kurita, K., Ishihara, K., & Nakabayashi, N. (1992). Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polymer Journal, 24, 1259鈥?269.CrossRef
    93.van der Heiden, A. P., Willems, G. M., Lindhout, T. A., Pijpers, A. P., & Koole, L. H. (1998). Adsorption of proteins onto poly(ether urethane) with a phosphorylcholine moiety and influence of preadsorbed phospholipids. Journal of Biomedical Materials Research, 40, 195鈥?03.CrossRef
    94.Murphy, E. F., Keddie, J. L., Lu, J. R., Brewer, J., & Russell, J. (1999). The reduced adsorption of lysozyme at the phosphorylcholine incorporated polymer/aqueous solution interface studied by spectroscopic ellipsometry. Biomaterials, 20, 1501鈥?511.CrossRef
    95.Parker, A. P., Reynolds, P. A., Lewis, A. L., Kirkwood, L., & Hughes, L. G. (2005). Investigation into potential mechanisms promoting biocompatibility of polymeric biomaterials containing the phosphorylcholine moiety: A physicochemical and biological study. Colloids and Surfaces B: Biointerfaces, 46, 204鈥?17.CrossRef
    96.Martwiset, S., Koh, A. E., & Chen, W. (2006). Nonfouling characteristics of dextran-containing surfaces. Langmuir, 22, 8192鈥?196.CrossRef
    97.McArthur, S. L., McLean, K. M., Kingshott, P., St John, H. A. W., Chatelier, R. C., & Griesser, H. J. (2000). Effect of polysaccharide structure on protein adsorption. Colloids and Surfaces B: Biointerfaces, 17, 37鈥?8.CrossRef
    98.Hu, S. G., Jou, C. H., & Yang, M. C. (2003). Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid. Biomaterials, 24, 2685鈥?693.CrossRef
    99.Yu, L., Li, C. M., Liu, Y., Gao, J., Wang, W., & Gan, Y. (2009). Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs. Lab on a Chip, 9, 1243鈥?247.CrossRef
    100.Yang, L., Li, L., Tu, Q., Ren, L., Zhang, Y., Wang, X., et al. (2010). Photocatalyzed surface modification of poly(dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility. Analytical Chemistry, 82, 6430鈥?439.CrossRef
    101.Huang, B., Wu, H., Kim, S., & Zare, R. N. (2005). Coating of poly(dimethylsiloxane) with n-dodecyl-b-D-maltoside to minimize nonspecific protein adsorption. Lab on a Chip, 5, 1005鈥?007.CrossRef MATH
    102.Wu, D., Luo, Y., Zhou, X., Dai, Z., & Lin, B. (2005). Multilayer poly(vinyl alcohol)-adsorbed coating on poly(dimethylsiloxane) microfluidic chips for biopolymer separation. Electrophoresis, 26, 211鈥?18.CrossRef
    103.Zhao, C., Li, L., Wang, Q., Yu, Q., & Zhen, J. (2011). Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Langmuir, 27, 4906鈥?913.CrossRef
    104.Siegers, C., Biesalski, M., & Haag, R. (2004). Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chemistry-A European Journal, 10, 2831鈥?838.CrossRef
    105.Yeh, P. Y. J., Kainthan, R. K., Zou, Y., Chiao, M., & Kizhakkedathu, J. N. (2008). Self-assembled monothiol-terminated hyperbranched polyglycerols on a gold surface: A comparative study on the structure, morphology, and protein adsorption characteristics with linear poly(ethylene glycol)s. Langmuir, 24, 4907鈥?916.CrossRef
    106.Huang, X., & Wirth, M. J. (1997). Surface-initiated radical polymerization on porous silica. Analytical Chemistry, 69, 4577鈥?580.CrossRef
    107.Huang, X., Doneski, L. J., & Wirth, M. J. (1998). Surface-confined living radical polymerization for coatings in capillary electrophoresis. Analytical Chemistry, 70, 4023鈥?029.CrossRef
    108.Huang, X., & Wirth, M. J. (1999). Surface tnitiation of living radical polymerization for growth of tethered chains of low polydispersity. Macromolecules, 32, 1694鈥?696.CrossRef
    109.Xiao, D., Zhang, H., & Wirth, M. (2002). Chemical modification of the surface of poly(dimethylsiloxane) by atom-transfer radical polymerization of acrylamide. Langmuir, 18, 9971鈥?976.CrossRef
    110.Xiao, D., Van Le, T., & Wirth, M. J. (2004). Surface modification of the channels of poly(dimethylsiloxane) microfluidic chips with polyacrylamide for fast electrophoretic separations of proteins. Analytical Chemistry, 76, 2055鈥?061.CrossRef
    111.Hu, S., Ren, X., Bachman, M., Sims, C. E., Li, G. P., & Allbritton, N. (2002). Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Analytical Chemistry, 74, 4117鈥?123.CrossRef
    112.Ebara, M., Hoffman, J. M., Stayton, P. S., & Hoffman, A. S. (2007). Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and 鈥榮mart鈥?polymers. Radiation Physics and Chemistry, 76, 1409鈥?413.CrossRef
    113.Liu, X., Wu, Z., Zhou, F., Li, D., & Chen, H. (2010). Poly(vinylpyrrolidone-b-styrene) block copolymers tethered surfaces for protein adsorption and cell adhesion regulation. Colloids and Surfaces B: Biointerfaces, 79, 452鈥?59.CrossRef
    114.Wu, Z., Chen, H., Liu, X., Zhang, Y., Li, D., & Huang, H. (2009). Protein adsorption on poly(N-vinylpyrrolidone)-modified silicon surfaces prepared by surface-initiated atom transfer radical polymerization. Langmuir, 25, 2900鈥?906.CrossRef
    115.Wu, Z., Tong, W., Jiang, W., Liu, X., Wang, Y., & Chen, H. (2012). Poly(N-vinylpyrrolidone)-modified poly(dimethylsiloxane) elastomers as anti-biofouling materials. Colloids and Surfaces B: Biointerfaces, 96, 37鈥?3.CrossRef
    116.Statz, A. R., Meagher, R. J., Barron, A. E., & Messersmith, P. B. (2005). New peptidomimetic polymers for antifouling surfaces. Journal of the American Chemical Society, 127, 7972鈥?973.CrossRef
    117.Statz, A. R., Barron, A. E., & Messersmith, P. B. (2008). Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: Effect of side-chain chemistry. Soft Matter, 4, 131鈥?39.CrossRef
    118.Konradi, R., Podhatika, B., M眉hlebach, A., & Textor, M. (2008). Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir, 24, 613鈥?16.CrossRef
    119.Tu, Q., Wang, J. C., Liu, R., He, J., Zhang, Y., Shen, S., et al. (2013). Antifouling properties of poly(dimethylsiloxane) surfaces modified with quaternized poly(dimethylaminoethyl methacrylate). Colloids and Surfaces B: Biointerfaces, 102, 361鈥?70.CrossRef
    120.Martinelli, E., Agostini, S., Galli, G., Chiellini, E., Glisenti, A., Pettitt, M. E., et al. (2008). Nanostructured films of amphiphilic fluorinated block copolymers for fouling release application. Langmuir, 24, 13138鈥?3147.CrossRef
    121.Sundaram, H. S., Cho, Y., Dimitriou, M. D., Finlay, J. A., Cone, G., Williams, S., et al. (2011). Fluorinated amphiphilic polymers and their blends for fouling-release applications: The benefits of a triblock copolymer surface. ACS Applied Materials & Interfaces, 3, 3366鈥?374.CrossRef
    122.Wang, Y., Betts, D. E., Finlay, J. A., Brewer, L., Callow, M. E., Callow, J. A., et al. (2011). Photocurable amphiphilic perfluoropolyether/poly(ethylene glycol) networks for fouling-release coatings. Macromolecules, 44, 878鈥?85.CrossRef MATH
    123.Yu, H. J., & Luo, Z. H. (2010). Novel superhydrophobic silica/poly(siloxane-fluoroacrylate) hybrid nanoparticles prepared via two-step surface-initiated ATRP: Synthesis, characterization, and wettability. Journal of Polymer Science Part A: Polymer Chemistry, 48, 5570鈥?580.CrossRef
    124.Yu, H. J., & Luo, Z. H. (2011). Novel superhydrophobic silica/poly(siloxane-fluoroacrylate) hybrid nanoparticles prepared via surface-initiated ATRP and their surface properties: The effects of polymerization conditions. Journal of Polymer Science Part A: Polymer Chemistry, 49, 174鈥?83.CrossRef
    125.Zhou, Y. N., & Luo, Z. H. (2013). Theoretical modeling coupled with experimental study on the preparation and characterization comparison of fluorinated copolymers: Effect of chain structure on copolymer properties. AIChE Journal, 59(8), 3019鈥?033.CrossRef
    126.Mielczarski, J. A., Mielczarski, E., Galli, G., Morelli, A., Martinelli, E., & Chiellini, E. (2010). The surface-segregated nanostructure of fluorinated copolymer-poly(dimethylsiloxane) blend films. Langmuir, 26(4), 2871鈥?876.CrossRef
    127.Marabotti, I., Morelli, A., Orsini, L. M., Martinelli, E., Galli, G., Chiellini, E., et al. (2009). Fluorinated/siloxane copolymer blends for fouling release: Chemical characterisation and biological evaluation with algae and barnacles. Biofouling, 25(6), 481鈥?93.CrossRef
    128.Wang, D., Oleschuk, R. D., & Horton, J. H. (2008). Surface modification of poly(dimethylsiloxane) with a perfluorinated alkoxysilane for selectivity toward fluorous tagged peptides. Langmuir, 24, 1080鈥?086.CrossRef
    129.Wang, D., Douma, M., Swift, B., Oleschuk, R. D., & Horton, J. H. (2009). The adsorption of globular proteins onto a fluorinated PDMS surface. Journal of Colloid and Interface Science, 331, 90鈥?7.CrossRef
    130.Gunkel, G., & Huck, W. T. S. (2013). Cooperative adsorption of lipoprotein phospholipids, triglycerides, and cholesteryl esters are a key factor in nonspecific adsorption from blood plasma to antifouling polymer surfaces. Journal of the American Chemical Society, 135, 7047鈥?052.CrossRef
  • 作者单位:Hongbin Zhang (1)
    Mu Chiao (1)

    1. Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
  • 刊物类别:Biomedical Engineering; Cell Biology; Imaging / Radiology;
  • 刊物主题:Biomedical Engineering; Cell Biology; Imaging / Radiology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2199-4757
文摘
Fouling initiated by nonspecific protein adsorption is a great challenge in biomedical applications, including biosensors, bioanalytical devices, and implants. Poly(dimethylsiloxane) (PDMS), a popular material with many attractive properties for device fabrication in the biomedical field, suffers serious fouling problems from protein adsorption due to its hydrophobic nature, which limits the practical use of PDMS-based devices. Effort has been made to develop biocompatible materials for anti-fouling coatings of PDMS. In this review, typical nonfouling materials for PDMS coatings are introduced and the associated basic anti-fouling mechanisms, including the steric repulsion mechanism and the hydration layer mechanism, are described. Understanding the relationships between the characteristics of coating materials and the accompanying anti-fouling mechanisms is critical for preparing PDMS coatings with desirable anti-fouling properties. Keywords Anti-fouling Surface modification Poly(dimethylsiloxane) (PDMS) Biomedical devices

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700