Methylglyoxal impairs endothelial insulin sensitivity both in vitro and in vivo
详细信息    查看全文
  • 作者:Cecilia Nigro (1) (2)
    Gregory A. Raciti (1) (2)
    Alessia Leone (1) (2)
    Thomas H. Fleming (3)
    Michele Longo (1) (2)
    Immacolata Prevenzano (1) (2)
    Francesca Fiory (1) (2)
    Paola Mirra (1) (2)
    Vittoria D’Esposito (1) (2)
    Luca Ulianich (1) (2)
    Peter P. Nawroth (3)
    Pietro Formisano (1) (2)
    Francesco Beguinot (1) (2)
    Claudia Miele (1) (2)
  • 关键词:Endothelial dysfunction ; Glyoxalase ; 1 ; Insulin resistance ; Methylglyoxal ; Nitric oxide
  • 刊名:Diabetologia
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:57
  • 期:7
  • 页码:1485-1494
  • 全文大小:
  • 参考文献:1. Schalkwijk CG, Stehouwer (2005) CDA: vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci 109:143-59 CrossRef
    2. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD (1996) Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 97:2601-610 CrossRef
    3. M?kimattila S, Virkam?ki A, Groop PH et al (1996) Chronic hyperglycemia impairs endothelial function and insulin sensitivity via different mechanisms in insulin-dependent diabetes mellitus. Circulation 94:1276-282 CrossRef
    4. Diederich D, Skopec J, Diederich A, Dai FX (1994) Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals. Am J Physiol 266:H1153–H1161
    5. Pflueger AC, Osswald H, Knox FG (1999) Adenosine-induced renal vasoconstriction in diabetes mellitus rats: role of nitric oxide. Am J Physiol 276:F340–F346
    6. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P (1994) Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest 94:2511-515 CrossRef
    7. Andreozzi F, Laratta E, Procopio C et al (2007) Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells. Mol Cell Biol 27:2372-383 CrossRef
    8. Kubota T, Kubota N, Moroi M et al (2003) Lack of insulin receptor substrate-2 causes progressive neointima formation in response to vessel injury. Circulation 107:3073-080 CrossRef
    9. Montagnani M, Ravichandran LV, Chen H, Esposito DL, Quon MJ (2002) Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol 16:1931-942 CrossRef
    10. Eringa EC, Stehouwer CD, Nieuw Amerongen GP, Ouwehand L, Westerhof N, Sipkema P (2004) Vasoconstrictor effects of insulin in skeletal muscle arterioles are mediated by ERK1/2 activation in endothelium. Am J Physiol Heart Circ Physiol 287:H2043–H2048 CrossRef
    11. Muniyappa R, Iantorno M, Quon MJ (2001) An integrated view of insulin resistance and endothelial dysfunction. Endocrinol Metab Clin N Am 37:685-11 CrossRef
    12. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813-20 CrossRef
    13. Goh SY, Cooper ME (2008) Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 93:1143-152 CrossRef
    14. Shinohara M, Thornalley PJ, Giardino I et al (1998) Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J Clin Invest 101:1142-147 CrossRef
    15. Bourajjaj M, Stehouwer CD, van Hinsbergh VW, Schalkwijk CG (2003) Role of methylglyoxal adducts in the development of vascular complications in diabetes mellitus. Biochem Soc Trans 31:1400-402 CrossRef
    16. Thornalley PJ (2005) Dicarbonyl intermediates in the maillard reaction. Ann N Y Acad Sci 1043:111-17 CrossRef
    17. Rabbani N, Thornalley PJ (2011) Glyoxalase in diabetes, obesity and related disorders. Semin Cell Dev Biol 22:309-17 CrossRef
    18. Fleming TH, Humpert PM, Nawroth PP, Bierhaus A (2011) Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review. Gerontology 57:435-43
    19. Thornalley PJ (2003) Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343-348 CrossRef
    20. Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol Drug Interact 23:125-50 CrossRef
    21. Wang X, Desai K, Chang T, Wu L (2005) Vascular methylglyoxal metabolism and the development of hypertension. J Hypertens 23:1565-573 CrossRef
    22. Wang X, Chang T, Jiang B, Desai K, Wu L (2007) Attenuation of hypertension development by aminoguanidine in spontaneously hypertensive rats: role of methylglyoxal. Am J Hypertens 20:629-36 CrossRef
    23. Wang X, Jia X, Chang T, Desai K, Wu L (2008) Attenuation of hypertension development by scavenging methylglyoxal in fructose-treated rats. J Hypertens 26:765-72 CrossRef
    24. Berlanga J, Cibrian D, Guillén I et al (2005) Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin Sci (Lond) 109:83-5 CrossRef
    25. Cassese A, Raciti GA, Fiory F et al (2013) Adenoviral gene transfer of PLD1-D4 enhances insulin sensitivity in mice by disrupting phospholipase D1 interaction with PED/PEA-15. PLoS One 8(4):e60555 CrossRef
    26. McLellan AC, Phillips SA, Thornalley PJ (1992) The assay of methylglyoxal in biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene. Anal Biochem 206:17-3 CrossRef
    27. Thornalley PJ, Edwards LG, Kang Y et al (1996) Antitumor activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Biochem Pharmacol 51:1365-372 CrossRef
    28. Gual P, Le Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99-09 CrossRef
    29. Bard-Chapeau EA, Hevener AL, Long S, Zhang EE, Olefsky JM, Feng GS (2005) Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nat Med 11:567-71 CrossRef
    30. Cersosimo E, DeFronzo RA (2006) Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev 22:423-36 CrossRef
    31. Federici M, Pandolfi A, de Filippis EA et al (2004) G972R IRS-1 variant impairs insulin regulation of endothelial nitric oxide synthase in cultured human endothelial cells. Circulation 109:399-05 CrossRef
    32. Bakker W, Eringa EC, Sipkema P, van Hinsbergh VW (2009) Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 335:165-89 CrossRef
    33. Jia X, Wu L (2007) Accumulation of endogenous methylglyoxal impaired insulin signaling in adipose tissue of fructose-fed rats. Mol Cell Biochem 306:133-39 CrossRef
    34. Riboulet-Chavey A, Pierron A, Durand I, Murdaca J, Giudicelli J, van Obberghen E (2006) Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. Diabetes 55:1289-299 CrossRef
    35. Sen U, Tyagi N et al (2009) Fibrinogen-induced endothelin-1 production from endothelial cells. Am J Physiol Cell Physiol 296:C840–C847 CrossRef
    36. Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787-90 CrossRef
    37. Glotin AL, Calipel A, Brossas JY, Faussat AM, Tréton J, Mascarelli F (2006) Sustained versus transient ERK1/2 signaling underlies the anti- and proapoptotic effects of oxidative stress in human RPE cells. Invest Ophthalmol Vis Sci 47:4614-623 CrossRef
    38. Guo Q, Mori T, Jiang Y et al (2009) Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in Sprague-Dawley rats. Hypertension 27:1664-671
    39. Shiekh GA, Ayub T, Khan SN, Dar R, Andrabi KI (2011) Reduced nitrate level in individuals with hypertension and diabetes. J Cardiovasc Dis Res 2:172-76 CrossRef
    40. Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284:R1–R12
    41. Raoch V, Rodríguez-Pascual F, López-Martínez V et al (2011) Nitric oxide decreases the expression of endothelin-converting enzyme-1 through mRNA destabilization. Arterioscler Thromb Vasc Biol 31:2577-585 CrossRef
    42. Dhar A, Desai KM, Wu L (2010) Alagebrium attenuates acute methylglyoxal-induced glucose intolerance in Sprague-Dawley rats. Br J Pharmacol 159:166-75 CrossRef
    43. Brouwers O, Niessen PM, Haenen G et al (2010) Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Diabetologia 53:989-000 CrossRef
  • 作者单位:Cecilia Nigro (1) (2)
    Gregory A. Raciti (1) (2)
    Alessia Leone (1) (2)
    Thomas H. Fleming (3)
    Michele Longo (1) (2)
    Immacolata Prevenzano (1) (2)
    Francesca Fiory (1) (2)
    Paola Mirra (1) (2)
    Vittoria D’Esposito (1) (2)
    Luca Ulianich (1) (2)
    Peter P. Nawroth (3)
    Pietro Formisano (1) (2)
    Francesco Beguinot (1) (2)
    Claudia Miele (1) (2)

    1. Institute of Experimental Endocrinology and Oncology ‘G. Salvatore- National Council of Research, Via Pansini 5, 80131, Naples, Italy
    2. Department of Translational Medical Sciences, University of Naples ‘Federico II- Naples, Italy
    3. Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
  • ISSN:1432-0428
文摘
Aims/hypothesis Insulin exerts a direct action on vascular cells, thereby affecting the outcome and progression of diabetic vascular complications. However, the mechanism through which insulin signalling is impaired in the endothelium of diabetic individuals remains unclear. In this work, we have evaluated the role of the AGE precursor methylglyoxal (MGO) in generating endothelial insulin resistance both in cells and in animal models. Methods Time course experiments were performed on mouse aortic endothelial cells (MAECs) incubated with 500?μmol/l MGO. The glyoxalase-1 inhibitor S-p-bromobenzylglutathione-cyclopentyl-diester (SpBrBzGSHCp2) was used to increase the endogenous levels of MGO. For the in vivo study, an MGO solution was administrated i.p. to C57BL/6 mice for 7?weeks. Results MGO prevented the insulin-dependent activation of the IRS1/protein kinase Akt/endothelial nitric oxide synthase (eNOS) pathway, thereby blunting nitric oxide (NO) production, while extracellular signal-regulated kinase (ERK1/2) activation and endothelin-1 (ET-1) release were increased by MGO in MAECs. Similar results were obtained in MAECs treated with SpBrBzGSHCp2. In MGO- and SpBrBzGSHCp2-exposed cells, inhibition of ERK1/2 decreased IRS1 phosphorylation on S616 and rescued insulin-dependent Akt activation and NO generation, indicating that MGO inhibition of the IRS1/Akt/eNOS pathway is mediated, at least in part, by ERK1/2. Chronic administration of MGO to C57BL/6 mice impaired whole-body insulin sensitivity and induced endothelial insulin resistance. Conclusions/interpretation MGO impairs the action of insulin on the endothelium both in vitro and in vivo, at least in part through an ERK1/2-mediated mechanism. These findings may be instrumental in developing novel strategies for preserving endothelial function in diabetes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700