Evolution of ZnS Nanoparticles via Facile CTAB Aqueous Micellar Solution Route: A Study on Controlling Parameters
详细信息    查看全文
  • 作者:S. K. Mehta (1)
    Sanjay Kumar (1)
    Savita Chaudhary (1)
    K. K. Bhasin (1)
    Michael Gradzielski (2)
  • 关键词:ZnS nanoparticles ; Optical absorption ; XRD ; SAXS ; FTIR ; spectroscopy
  • 刊名:Nanoscale Research Letters
  • 出版年:2009
  • 出版时间:January 2009
  • 年:2009
  • 卷:4
  • 期:1
  • 页码:17-28
  • 全文大小:590KB
  • 参考文献:1. L.E. Brus, J. Chem. Phys. 80, 4403 (1984). doi:10.1063/1.447218 CrossRef
    2. A. Hasselbarth, A. Eychmuller, H. Weller, Chem. Phys. Lett. 133, 203 (1986)
    3. Y. Wang, Acc. Chem. Res. 24, 133 (1991). doi:10.1021/ar00005a002 CrossRef
    4. S. Kar, S. Chaudhri, J. Phys. Chem. B 109, 3298 (2005). doi:10.1021/jp045817j CrossRef
    5. X.D. Gao, X.M. Li, W.D. Yu, Thin Solid Films 468, 43 (2004). doi:10.1016/j.tsf.2004.04.005 CrossRef
    6. R. Chen, D.J. Lockwood, J. Electrochem. Soc. 149, S69 (2002). doi:10.1149/1.1502258 CrossRef
    7. S.C. Ghosh, C. Thanachayanont, J. Dutta, / ECTI-CON (Pattaya, Thailand, 2004), p. 145
    8. B.G. Wang, E.W. Shi, W.Z. Zhong, Cryst. Res. Technol. 35, 279 (2000). doi:10.1002/1521-4079(200003)35:3<279::AID-CRAT279>3.0.CO;2-Q CrossRef
    9. R. Lv, C. Cao, Y. Guo, H. Zhu, J. Mater. Sci. 39, 1575 (2004). doi:10.1023/B:JMSC.0000016154.71163.b8 CrossRef
    10. W.S. Chae, J.H. Yoon, H. Yu, D.J. Jang, Y.R. Kim, J. Phys. Chem. 108, 11509 (2004)
    11. N.I. Kortyokhova, E.U. Buzaneva, C.C. Waraksa, N.R. Martin, T.E. Mallouk, Chem. Mater. 12, 383 (2000). doi:10.1021/cm990395p CrossRef
    12. C. Falcony, M. Garcia, A. Qrtiz, J.C. Alonso, J. Appl. Phys. 72, 1525 (1992). doi:10.1063/1.351720 CrossRef
    13. R. Maity, K.K. Chattopadhyay, Nanotech 15, 812 (2004). doi:10.1088/0957-4484/15/7/017 CrossRef
    14. Y. Yang, J. Huang, S. Liu, J. Shen, J. Mater. Chem. 7, 131 (1997). doi:10.1039/a603555h CrossRef
    15. H.C. Warad, S.C. Ghosh, B. Hemtanon, C. Thano, C.J. Dutta, Sci. Technol. Adv. Mater. 6, 296 (2005)
    16. Q. Wu, N. Zheng, Y. Ding, Y. Li, Inorg. Chem. Commun. 5, 671 (2002). doi:10.1016/S1387-7003(02)00523-3 CrossRef
    17. D. Mitra, I. Chakraborty, S.P. Moulik, Colloid J. 67, 494 (2005). doi:10.1007/s10595-005-0117-1 CrossRef
    18. S.-D. Han, K.C. Singh, H.-S. Lee, T.-Y. Cho, J.P. Hulme, C.-H. Han, I.-S. Chun, J. Gwak, Mater. Chem. Phys. (2008) (in press)
    19. A. Murugadoss, A. Chattopadhyay, Bull. Mater. Sci. 31, 533 (2008). doi:10.1007/s12034-008-0083-4 CrossRef
    20. S. Paria, K.C. Khilar, Adv. Colloid Interface Sci. 110, 75 (2004). doi:10.1016/j.cis.2004.03.001 CrossRef
    21. X.V. Zhang, S.P. Ellery, C.M. Friend, H.D. Holland, F.M. Michel, M.A.A. Schoonen, S.T. Martin, J. Photochem. Photobiol. Chem. 168, 153 (2004). doi:10.1016/j.jphotochem.2004.03.028 CrossRef
    22. M.K. Naskar, A. Patra, M. Chattrerjee, J. Colloid. Interface. Sci. 297, 271 (2006). doi:10.1016/j.jcis.2005.10.057 CrossRef
    23. N.M. Huang, C.S. Kan, P.S. Khiew, S. Radiman, J. Mater. Sci. 39, 2411 (2004). doi:10.1023/B:JMSC.0000020003.51378.55 CrossRef
    24. O. Schmelz, A. Mews, T. Basche, A. Herrmann, K. Mullen, Langmuir 17, 2861 (2001). doi:10.1021/la0016367 CrossRef
    25. J. Tauc, A. Menth, Non-Cryst. Solids 569, 8 (1972)
    26. Y. Wang, A. Suna, W. Mahler, R. Kasowaki, J. Chem. Phys. 87, 7315 (1987). doi:10.1063/1.453325 CrossRef
    27. Y. Wang, N. Herron, J. Phys. Chem. 95, 525 (1991). doi:10.1021/j100155a009 CrossRef
    28. J.H. Yu, J. Joo, H.M. Park, S. Bark, Y.W. Kim, S.C. Kim, T. Hyeon, J. Am. Chem. Soc. 127, 5662 (2005). doi:10.1021/ja044593f CrossRef
    29. J.F. Suyver, S.F. Wuister, J.J. Kelly, A. Meijerink, Nano. Lett. 1, 429 (2001). doi:10.1021/nl015551h CrossRef
    30. C. Burda, M.A. El-sayed, Pure Appl. Chem. 72, 165 (2000). doi:10.1351/pac200072010165 CrossRef
    31. R. Maity, K.K. Chattopadhyay, Nanotechnology 15, 812 (2004). doi:10.1088/0957-4484/15/7/017 CrossRef
    32. I. Chakraborty, S.P. Moulik, J. Nanopart. Res. 7, 237 (2005). doi:10.1007/s11051-005-3472-2 CrossRef
    33. A. Guinier, G. Fournet, / Small-Angle Scattering of X-rays (Wiley, New York, 1955)
    34. A.K. Keshari, A.C. Pandey, J. Nanosci. Nanotechnol. 8, 1221 (2008). doi:10.1166/jnn.2008.370 CrossRef
    35. L.P. Wang, G.Y. Hong, Mater. Res. Bull. 35, 695 (2000). doi:10.1016/S0025-5408(00)00261-0 CrossRef
    36. J.M. Nedeljkovic, R.C. Patel, P. Kaufman, C.J. Pruden, N. O’Leary, J. Chem. Educ. 70, 342 (1993) CrossRef
    37. P.A. Sant, P.V. Kamat, Phys. Chem. Chem. Phys. 4, 198 (2002). doi:10.1039/b107544f CrossRef
    38. Z. Sui, X. Chen, L. Wang, Y. Chai, C. Yang, J. Zhao, Chem. Lett. 34, 100 (2005). doi:10.1246/cl.2005.100 CrossRef
    39. A. Henglein, M. Gutierrez, Ber. Bunsenges. Phys. Chem. 87, 852 (1983)
    40. H. Weller, U. Koch, M. Gutierrez, A. Henglein, Ber. Bunsenges. Phys. Chem. 88, 649 (1984)
  • 作者单位:S. K. Mehta (1)
    Sanjay Kumar (1)
    Savita Chaudhary (1)
    K. K. Bhasin (1)
    Michael Gradzielski (2)

    1. Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
    2. Stranski-Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, TU Berlin, Sekr. TC 7, Strasse des 17. Juni 124, D-10623, Berlin, Germany
  • ISSN:1556-276X
文摘
Synthesis of semiconductor nanoparticles with new photophysical properties is an area of special interest. Here, we report synthesis of ZnS nanoparticles in aqueous micellar solution of Cetyltrimethylammonium bromide (CTAB). The size of ZnS nanodispersions in aqueous micellar solution has been calculated using UV-vis spectroscopy, XRD, SAXS, and TEM measurements. The nanoparticles are found to be polydispersed in the size range 6-5?nm. Surface passivation by surfactant molecules has been studied using FTIR and fluorescence spectroscopy. The nanoparticles have been better stabilized using CTAB concentration above 1?mM. Furthermore, room temperature absorption and fluorescence emission of powdered ZnS nanoparticles after redispersion in water have also been investigated and compared with that in aqueous micellar solution. Time-dependent absorption behavior reveals that the formation of ZnS nanoparticles depends on CTAB concentration and was complete within 25?min.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700