LMP1-augmented kappa intron enhancer activity contributes to upregulation expression of Ig kappa light chain via NF-kappaB and AP-1 pathways in nasopharyngeal carcinoma cells
详细信息    查看全文
  • 作者:HaiDan Liu (1) (2)
    Hui Zheng (1)
    Zhi Duan (1)
    DuoSha Hu (1)
    Ming Li (1)
    SuFang Liu (1)
    ZiJian Li (1)
    XiYun Deng (1)
    ZhenLian Wang (1)
    Min Tang (1)
    Ying Shi (1)
    Wei Yi (1)
    Ya Cao (1)
  • 刊名:Molecular Cancer
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:8
  • 期:1
  • 全文大小:3783KB
  • 参考文献:1. Liu HD, Zheng H, Li M, Hu DS, Tang M, Cao Y: Upregulated expression of kappa light chain by Epstein-Barr virus encoded latent membrane protein 1 in nasopharyngeal carcinoma cells via NF-kappaB and AP-1 pathways. / Cell Signal 2007, 19:419-27. CrossRef
    2. Okabe H, Satoh S, Kato T, Kitahara O, Yanagawa R, Yamaoka Y, Tsunoda T, Furukawa Y, Nakamura Y: Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. / Cancer Res 2001, 61:2129-137.
    3. Kimoto Y: Expression of heavy-chain constant region of immunoglobulin and T-cell receptor gene transcripts in human non-hematopoietic tumor cell lines. / Genes Chromosomes Cancer 1998, 22:83-6. CrossRef
    4. Li J, Tan C, Xiang Q, Zhang X, Ma J, Wang JR, Yang J, Li W, Shen SR, Liang S, Li G: Proteomic detection of changes in protein synthesis induced by NGX6 transfected in human nasopharyngeal carcinoma cells. / J Protein Chem 2001, 20:265-71. CrossRef
    5. Qiu X, Zhu X, Zhang L, Mao Y, Zhang J, Hao P, Li G, Lv P, Li Z, Sun X, / et al.: Human epithelial cancers secrete immunoglobulin g with unidentified specificity to promote growth and survival of tumor cells. / Cancer Res 2003, 63:6488-495.
    6. Xiao T, Ying W, Li L, Hu Z, Ma Y, Jiao L, Ma J, Cai Y, Lin D, Guo S, / et al.: An approach to studying lung cancer-related proteins in human blood. / Mol Cell Proteomics 2005, 4:1480-486. CrossRef
    7. Chen Z, Gu J: Immunoglobulin G expression in carcinomas and cancer cell lines. / Faseb J 2007, 21:2931-938. CrossRef
    8. Zhu X, Li C, Sun X, Mao Y, Li G, Liu X, Zhang Y, Qiu X: Immunoglobulin mRNA and protein expression in human oral epithelial tumor cells. / Appl Immunohistochem Mol Morphol 2008, 16:232-38. CrossRef
    9. Huang J, Sun X, Mao Y, Zhu X, Zhang P, Zhang L, Du J, Qiu X: Expression of immunoglobulin gene with classical V-(D)-J rearrangement in mouse brain neurons. / Int J Biochem Cell Biol 2008, 40:1604-615. CrossRef
    10. Li M, Feng DY, Ren W, Zheng L, Zheng H, Tang M, Cao Y: Expression of immunoglobulin kappa light chain constant region in abnormal human cervical epithelial cells. / Int J Biochem Cell Biol 2004, 36:2250-257. CrossRef
    11. Pongubala JM, Atchison ML: Activating transcription factor 1 and cyclic AMP response element modulator can modulate the activity of the immunoglobulin kappa 3' enhancer. / J Biol Chem 1995, 270:10304-0313. CrossRef
    12. Sen R: NF-kappaB and the immunoglobulin kappa gene enhancer. / J Exp Med 2004, 200:1099-102. CrossRef
    13. Pongubala JM, Atchison ML: PU.1 can participate in an active enhancer complex without its transcriptional activation domain. / Proc Natl Acad Sci USA 1997, 94:127-32. CrossRef
    14. Meyer KB, Ireland J: Activation of the immunoglobulin kappa 3' enhancer in pre-B cells correlates with the suppression of a nuclear factor binding to a sequence flanking the active core. / Nucleic Acids Res 1994, 22:1576-582. CrossRef
    15. Staudt LM, Lenardo MJ: Immunoglobulin gene transcription. / Annu Rev Immunol 1991, 9:373-98. CrossRef
    16. Lenardo M, Pierce JW, Baltimore D: Protein-binding sites in Ig gene enhancers determine transcriptional activity and inducibility. / Science 1987, 236:1573-577. CrossRef
    17. Izumi KM: Epstein-Barr virus signal transduction and B-lymphocyte growth transformation. / Prog Mol Subcell Biol 2004, 36:269-88.
    18. Eliopoulos AG, Gallagher NJ, Blake SM, Dawson CW, Young LS: Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. / J Biol Chem 1999, 274:16085-6096. CrossRef
    19. Gires O, Kohlhuber F, Kilger E, Baumann M, Kieser A, Kaiser C, Zeidler R, Scheffer B, Ueffing M, Hammerschmidt W: Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. / Embo J 1999, 18:3064-073. CrossRef
    20. Hammarskjold ML, Simurda MC: Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF-kappa B activity. / J Virol 1992, 66:6496-501.
    21. Mainou BA, Everly DN Jr, Raab-Traub N: Epstein-Barr virus latent membrane protein 1 CTAR1 mediates rodent and human fibroblast transformation through activation of PI3K. / Oncogene 2005, 24:6917-924. CrossRef
    22. Roberts ML, Cooper NR: Activation of a ras-MAPK-dependent pathway by Epstein-Barr virus latent membrane protein 1 is essential for cellular transformation. / Virology 1998, 240:93-9. CrossRef
    23. Song X, Tao YG, Deng XY, Jin X, Tan YN, Tang M, Wu Q, Lee LM, Cao Y: Heterodimer formation between c-Jun and Jun B proteins mediated by Epstein-Barr virus encoded latent membrane protein 1. / Cell Signal 2004, 16:1153-162. CrossRef
    24. Li HP, Chang YS: Epstein-Barr virus latent membrane protein 1: structure and functions. / J Biomed Sci 2003, 10:490-04. CrossRef
    25. Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W, Raab-Traub N, Kikutani H: Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. / Science 1999, 286:300-03. CrossRef
    26. Van Kooten C, Banchereau J: CD40-CD40 ligand: a multifunctional receptor-ligand pair. / Adv Immunol 1996, 61:1-7. CrossRef
    27. Grant PA, Andersson T, Neurath MF, Arulampalam V, Bauch A, Muller R, Reth M, Pettersson S: A T cell controlled molecular pathway regulating the IgH locus: CD40-mediated activation of the IgH 3' enhancer. / Embo J 1996, 15:6691-700.
    28. Sen R, Baltimore D: Multiple nuclear factors interact with the immunoglobulin enhancer sequences. / Cell 1986, 46:705-16. CrossRef
    29. Pierce JW, Lenardo M, Baltimore D: Oligonucleotide that binds nuclear factor NF-kappa B acts as a lymphoid-specific and inducible enhancer element. / Proc Natl Acad Sci USA 1988, 85:1482-486. CrossRef
    30. Queen C, Stafford J: Fine mapping of an immunoglobulin gene activator. / Mol Cell Biol 1984, 4:1042-049.
    31. Schanke JT, Marcuzzi A, Podzorski RP, Van Ness B: An AP1 binding site upstream of the kappa immunoglobulin intron enhancer binds inducible factors and contributes to expression. / Nucleic Acids Res 1994, 22:5425-432. CrossRef
    32. Lars N, Paschalis S: The human I alpha 1 and I alpha 2 germline promoter elements: proximal positive and distal negative elements may regulate the tissue specific expression of C alpha 1 and C alpha 2 germline transcripts. / Int Immunol 1993, 5:271-82. CrossRef
    33. Wittekindt NE, Hortnagel K, Geltinger C, Polack A: Activation of c-myc promoter P1 by immunoglobulin kappa gene enhancers in Burkitt lymphoma: functional characterization of the intron enhancer motifs kappaB, E box 1 and E box 2, and of the 3' enhancer motif PU. / Nucleic Acids Res 2000, 28:800-08. CrossRef
    34. Nelms K, Hromas R, Van Ness B: Identification of a second inducible DNA-protein interaction in the kappa immunoglobulin enhancer. / Nucleic Acids Res 1990, 18:1037-043. CrossRef
    35. Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG, Samoylova E, Khodyakova AV, Ganapathi R, Ganapathi M, Tararova ND, / et al.: Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors. / Proc Natl Acad Sci USA 2005, 102:17448-7453. CrossRef
    36. Ding L, Li LL, Yang J, Tao YG, Ye M, Shi Y, Tang M, Yi W, Li XL, Gong JP, Cao Y: Epstein-Barr virus encoded latent membrane protein 1 modulates nuclear translocation of telomerase reverse transcriptase protein by activating nuclear factor-kappaB p65 in human nasopharyngeal carcinoma cells. / Int J Biochem Cell Biol 2005, 37:1881-889. CrossRef
    37. Kahlina K, Goren I, Pfeilschifter J, Frank S: p68 DEAD box RNA helicase expression in keratinocytes. Regulation, nucleolar localization, and functional connection to proliferation and vascular endothelial growth factor gene expression. / J Biol Chem 2004, 279:44872-4882. CrossRef
    38. Zheng H, Li M, Liu H, Ren W, Hu DS, Shi Y, Tang M, Cao Y: Immunoglobulin alpha heavy chain derived from human epithelial cancer cells promotes the access of S phase and growth of cancer cells. / Cell Biol Int 2007, 31:82-7. CrossRef
    39. Demengeot J, Oltz EM, Alt FW: Promotion of V(D)J recombinational accessibility by the intronic E kappa element: role of the kappa B motif. / Int Immunol 1995, 7:1995-003. CrossRef
    40. Perkins ND: Integrating cell-signalling pathways with NF-kappaB and IKK function. / Nat Rev Mol Cell Biol 2007, 8:49-2. CrossRef
    41. Perkins ND: Oncogenes, tumor suppressors and p52 NF-kappaB. / Oncogene 2003, 22:7553-556. CrossRef
    42. Perkins ND, Agranoff AB, Pascal E, Nabel GJ: An interaction between the DNA-binding domains of RelA(p65) and Sp1 mediates human immunodeficiency virus gene activation. / Mol Cell Biol 1994, 14:6570-583.
    43. Hess J, Angel P, Schorpp-Kistner M: AP-1 subunits: quarrel and harmony among siblings. / J Cell Sci 2004, 117:5965-973. CrossRef
    44. Karin M, Liu Z, Zandi E: AP-1 function and regulation. / Curr Opin Cell Biol 1997, 9:240-46. CrossRef
    45. Qi X, Borowicz S, Pramanik R, Schultz RM, Han J, Chen G: Estrogen receptor inhibits c-Jun-dependent stress-induced cell death by binding and modifying c-Jun activity in human breast cancer cells. / J Biol Chem 2004, 279:6769-777. CrossRef
    46. Andrew AS, Klei LR, Barchowsky A: AP-1-dependent induction of plasminogen activator inhibitor-1 by nickel does not require reactive oxygen. / Am J Physiol Lung Cell Mol Physiol 2001, 281:L616-23.
    47. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR: Site-directed mutagenesis by overlap extension using the polymerase chain reaction. / Gene 1989, 77:51-9. CrossRef
  • 作者单位:HaiDan Liu (1) (2)
    Hui Zheng (1)
    Zhi Duan (1)
    DuoSha Hu (1)
    Ming Li (1)
    SuFang Liu (1)
    ZiJian Li (1)
    XiYun Deng (1)
    ZhenLian Wang (1)
    Min Tang (1)
    Ying Shi (1)
    Wei Yi (1)
    Ya Cao (1)

    1. Cancer Research Institute, Xiangya School of Medicine, Central South University, Xiangya Road 110, Changsha, Hunan, 410078, PR, China
    2. Center of Clinical Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Renmin Road 139, Changsha, Hunan, 410011, PR, China
  • ISSN:1476-4598
文摘
Background Expression of kappa gene is under the control of distinct cis-regulatory elements, including the kappa intron enhancer (iEκ) and the kappa 3' enhancer (3'Eκ). The active enhancers and expression of immunoglobulin is generally considered to be restricted to B lymphocytes. However, accumulating evidence indicated that epithelial cancer cells, including nasopharyngeal carcinoma (NPC) cell lines, express immunoglobulins. The mechanisms underlying the expression of Igs in nonlymphoid cells remain unknown. On the basis of our previous finding that expression of kappa light chain in NPC cells can be upregulated by EBV-encoded latent membrane protein 1(LMP1) through the activation of NF-κB and AP-1 signaling pathways, we thus use NPC cells as model to further explore the molecular mechanisms of nonlymphoid cells expressing Ig kappa. Results In this study, luciferase reporter plasmid containing human wild-type iEκ, and its derivative plasmids containing mutant binding sites for transcription factor NF-κB or AP-1 were constructed. Luciferase reporter assays demonstrate iEκ is active in Igκ-expressing NPC cells and LMP1 expression can upregulate the activity of iEκ in NPC cells. Mutation of the NF-κB or AP-1 site within and downstream the iEκ, inhibition of the NF-κB and AP-1 pathways by their respective chemical inhibitor Bay11-7082 and SP600125 as well as stable or transient expression of dominant-negative mutant of IκBα (DNMIκBα) or of c-Jun (TAM67) indicate that both sites are functional and LMP1-enhanced iEκ activity is partly regulated by these two sites. Gel shift assays show that LMP1 promotes NF-κB subunits p52 and p65 as well as AP-1 family members c-Jun and c-Fos binding to the κNF-κB and the κAP-1 motifs in vitro, respectively. Both chemical inhibitors and dominant negative mutants targeting for NF-κB and AP-1 pathways can attenuate the LMP1-enhanced bindings. Co-IP assays using nuclear extracts from HNE2-LMP1 cells reveal that p52 and p65, c-Jun and c-Fos proteins interact with each other at endogenous levels. ChIP assays further demonstrate p52 and p65 binding to the κB motif as well as c-Jun and c-Fos binding to the AP-1 motif of Ig kappa gene in vivo. Conclusion These results suggest that human iEκ is active in Igκ-expressing NPC cells and LMP1-stimulated NF-κB and AP-1 activation results in an augmenting activation of the iEκ. LMP1 promotes the interactions of heterodimeric NF-κB (p52/p65) and heterodimeric AP-1 (c-Jun/c-Fos) transcription factors with the human iEκ enhancer region are important for the upregulation of kappa light chain in LMP1-positive nasopharyngeal carcinoma cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700