Fine mapping of DTH3b, a minor heading date QTL potentially functioning upstream of Hd3a and RFT1 under long-day conditions in rice
详细信息    查看全文
  • 作者:Liping Chen ; Zhengzheng Zhong ; Weixun Wu ; Linglong Liu ; Guangwen Lu…
  • 关键词:Rice ; DTH3b ; Minor ; effect QTL ; Heading date ; Near ; isogenic line ; Long ; day conditions
  • 刊名:Molecular Breeding
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:35
  • 期:11
  • 全文大小:770 KB
  • 参考文献:Bian X, Liu X, Zhao Z, Jiang L, Gao H, Zhang Y, Zheng M, Chen L, Liu S, Zhai H, Wan J (2011) Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep 30:2243–2254CrossRef PubMed
    Blumel M, Dally N, Jung C (2015) Flowering time regulation in crops—what did we learn from Arabidopsis? Curr Opin Biotechnol 32:121–129CrossRef PubMed
    Chen J, Li X, Cheng C, Wang Y, Qin M, Zhu H, Zeng R, Fu X, Liu Z, Zhang G (2014) Characterization of epistatic interaction of QTLs LH8 and EH3 controlling heading date in rice. Sci Rep 4:4263PubMedCentral PubMed
    Cockram J, Jones H, Leigh F, O’Sullivan D, Powell W, Laurie D, Greenland A (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58(6):1231–1244CrossRef PubMed
    Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936PubMedCentral CrossRef PubMed
    Gao H, Zheng X, Fei G, Chen J, Jin M, Ren Y, Wu W, Zhou K, Sheng P, Zhou F, Jiang L, Wang J, Zhang X, Guo X, Wang J, Cheng Z, Wu C, Wang H, Wan J (2013) Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genet 9:e1003281PubMedCentral CrossRef PubMed
    Gao H, Jin M, Zheng X, Chen J, Yuan D, Xin Y, Wang M, Huang D, Zhang Z, Zhou K, Sheng P, Ma J, Ma W, Deng H, Jiang L, Liu S, Wang H, Wu C, Yuan L, Wan J (2014) Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA 111:16337–16342PubMedCentral CrossRef PubMed
    Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722CrossRef PubMed
    Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M (2013) Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J 76:36–46PubMedCentral PubMed
    Itoh JI, Hasegawa A, Kitano H, Nagato Y (1998) A recessive heterochronic mutation, plastochron1, shortens the plastochron and elongates the vegetative phase in rice. Plant Cell 10:1511–1522PubMedCentral CrossRef PubMed
    Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58:3091–3097CrossRef PubMed
    Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16:2006–2020PubMedCentral CrossRef PubMed
    Kim S, Yun C, Lee J, Jang Y, Park H, Kim J (2008) OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 228:355–365CrossRef PubMed
    Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105PubMed
    Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135:767–774CrossRef PubMed
    Koo B, Yoo S, Park J, Kwon C, Lee B, An G, Zhang Z, Li J, Li Z, Paek N (2013) Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant 6:1877–1888CrossRef PubMed
    Kubo T, Nakamura K, Yoshimura A (1999) Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genet Newsl 16:104–106
    Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newberg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRef PubMed
    Li Z, Pinson S, Stansel J, Park W (1995) Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet 91:374–381PubMed
    Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374PubMedCentral CrossRef PubMed
    Li D, Yang C, Li X, Gan Q, Zhao X, Zhu L (2009) Functional characterization of rice OsDof12. Planta 229:1159–1169CrossRef PubMed
    Lin S, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet 96:997–1003CrossRef
    Lin H, Yamamoto T, Sasaki T, Yano M (2000) Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet 101:1021–1028CrossRef
    Lin H, Ashikari M, Yamanouchi U, Sasaki T, Yano M (2002) Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breed Sci 52:35–41CrossRef
    Lin H, Liang Z, Sasaki T, Yano M (2003) Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breed Sci 53:51–59CrossRef
    Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRef PubMed
    Matsubara K, Kono I, Hori K, Nonoue Y, Ono N, Shomura A, Mizubayashi T, Yamamoto S, Yamanouchi U, Shirasawa K, Nishio T, Yano M (2008) Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor Appl Genet 117:935–945CrossRef PubMed
    Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M (2012) Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol 53:709–716CrossRef PubMed
    Matsubara K, Hori K, Ogiso-Tanaka E, Yano M (2014) Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice. Front Plant Sci 5:193PubMedCentral CrossRef PubMed
    Monna L, Lin H, Kojima S, Sasaki T, Yano M (2002) Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104:772–778CrossRef PubMed
    Murphy R, Klein R, Morishige D, Brady J, Rooney W, Miller F, Dugas D, Klein P, Mullet J (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 108:16469–16474PubMedCentral CrossRef PubMed
    Okumoto Y, Ichitani K, Inoue H, Tanisaka T (1996) Photoperiod insensitivity gene essential to the varieties grown in the northern limit region of paddy rice (Oryza sativa L.) cultivation. Euphytica 92:63–66CrossRef
    Sun C, Fang J, Zhao T, Xu B, Zhang F, Liu L, Tang J, Zhang G, Deng X, Chen F, Qian Q, Cao X, Chu C (2012) The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice. Plant Cell 24:3235–3247PubMedCentral CrossRef PubMed
    Sun C, Chen D, Fang J, Wang P, Deng X, Chu C (2014) Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways. Plant Cell 5:889–898
    Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927PubMedCentral CrossRef PubMed
    Takeuchi Y, Lin S, Sasaki T, Yano M (2003) Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet 107:1174–1180CrossRef PubMed
    Tsuji H, Taoka K, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol 14:45–52CrossRef PubMed
    Tsuji H, Taoka K, Shimamoto K (2013) Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions. Curr Opin Plant Biol 16:228–235CrossRef PubMed
    Wei X, Liu L, Xu J, Jiang L, Zhang W, Wang J, Zhai H, Wan J (2010a) Breeding strategies for optimum heading date using genotypic information in rice. Mol Breed 25:287–298CrossRef
    Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010b) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758PubMedCentral CrossRef PubMed
    Worland A, Borner A, Korzun V, Li W, Petrovic S, Sayers E (1998) The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica 100:385–394CrossRef
    Wu W, Zheng X, Lu G, Zhong Z, Gao H, Chen L, Wu C, Wang H, Wang Q, Zhou K, Wang J, Wu F, Zhang X, Guo X, Cheng Z, Lei C, Lin Q, Jiang L, Wang H, Ge S, Wan J (2013) Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA 110:2775–2780PubMedCentral CrossRef PubMed
    Xiao J, Li J, Yuan L, Tanksley S (1995) Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745–754PubMedCentral PubMed
    Xiao J, Li J, Yuan L, Tanksley S (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92:230–244CrossRef PubMed
    Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767CrossRef PubMed
    Yamamoto T, Kuboki Y, Lin S, Sasaki T, Yano M (1998) Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendellian factors. Theor Appl Genet 97:37–44CrossRef
    Yamamoto T, Lin H, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154:885–891PubMedCentral PubMed
    Yan W, Wang P, Chen H, Zhou H, Li Q, Wang C, Ding Z, Zhang Y, Yu S, Xing Y, Zhang Q (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330CrossRef PubMed
    Yan W, Liu H, Zhou X, Li Q, Zhang J, Lu L, Liu T, Liu H, Zhang C, Zhang Z, Shen G, Yao W, Chen H, Yu S, Xie W, Xing Y (2013) Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res 23:969–971PubMedCentral CrossRef PubMed
    Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95:1025–1032CrossRef
    Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484PubMedCentral CrossRef PubMed
    Zhou Y, Li W, Wu W, Chen Q, Mao D, Worland A (2001) Genetic dissection of heading time and its components in rice. Theor Appl Genet 102:1236–1242
  • 作者单位:Liping Chen (1)
    Zhengzheng Zhong (2)
    Weixun Wu (1)
    Linglong Liu (1)
    Guangwen Lu (1)
    Mingna Jin (2)
    Junjie Tan (2)
    Peike Sheng (2)
    Dan Wang (2)
    Jiachang Wang (1)
    Zhijun Cheng (2)
    Jiulin Wang (2)
    Xin Zhang (2)
    Xiuping Guo (2)
    Fuqing Wu (2)
    Qibing Lin (2)
    Shanshan Zhu (2)
    Ling Jiang (1)
    Huqu Zhai (1)
    Chuanyin Wu (2)
    Jianmin Wan (1) (2)

    1. National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
    2. National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-9788
文摘
Flowering time or heading date in rice is an important agronomic trait that determines cultivation area and cropping season of a given variety. The genes/loci that have minor effect on the heading date are believed to play a critical role in adaptation of rice to different geographical regions and are preferred by breeders. Previously, we detected a stable minor-effect quantitative trait locus, qDTH-3b (for Days to heading 3b; hereafter referred to as DTH3b), using a small population consisting of recombinant inbred lines derived from a cross between the japonica cv. Asominori (Aso) and the indica cv. IR24. However, its precise location remains to be defined. In this study, we fine-mapped DTH3b by using advanced backcrossing lines and explored its role in regulating the heading date. First, we constructed a BC4F2 population by backcrossing a chromosome segment substitution line (CSSL23) with Aso as a recurrent parent. Then, we developed a near-isogenic line (NIL) from this population by marker-assisted selection. This NIL has the genetic background of Aso but carries a 12-cM DTH3b-containing chromosome segment from IR24. Compared with Aso, the NIL showed 6.9-day delay in flowering time and 63.8 % lower seed maturation rate under long-day (LD) conditions, whereas there was no significant difference between the NIL and Aso under short-day conditions. Using a total of 1500 Asominori/NIL F2:3 or F3:4 late-heading families grown under LD conditions, we finally dissected DTH3b to a single Mendelian factor and delimited it to a 46-kb genomic region which contains seven open reading frames. Further, our quantitative real-time PCR analysis indicated that transcription level of Hd3a (Heading date 3a) and RFT1 (RICE FLOWERING LOCUS T 1), the two florigen genes, was significantly lower in the NIL than in Aso, suggesting that DTH3b functions upstream of Hd3a and RFT1 under LD conditions. We propose that DTH3b Aso positively regulates flowering time and contributes to adaptation of rice to the north. Cloning and then manipulation of DTH3b can be a useful approach to optimize flowering time in rice breeding.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700