Application of a non-halogenated solvent, methyl ethyl ketone (MEK) for recovery of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)] from bacterial cells
详细信息    查看全文
  • 作者:Yung-Hun Yang ; Jong-Min Jeon ; Da Hye Yi
  • 关键词:polyhydroxyalkanoate ; recovery ; solvent extraction ; poly(hydroxybutyrate ; co ; hydroxyvalerate) ; methylethylketone
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:20
  • 期:2
  • 页码:291-297
  • 全文大小:317 KB
  • 参考文献:1.Madison, L. L. and G. W. Huisman (1999) Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21鈥?3.
    2.Steinb眉chel, A. and B. Fuchtenbusch (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol. 16: 419鈥?27.View Article
    3.Chen, G. Q. (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 38: 2434鈥?446.View Article
    4.Anderson, A. J. and E. A. Dawes (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450鈥?72.
    5.Jeon, J. M., C. J. Brigham, Y. H. Kim, H. J. Kim, D. H. Yi, H. Kim, C. Rha, A. J. Sinskey, and Y. H. Yang (2014) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl. Microbiol. Biotechnol. 98: 5461鈥?469.View Article
    6.Khanna, S. and A. K. Srivastava (2005) A simple structured mathematical model for biopolymer (PHB) production. Biotechnol. Prog. 21: 830鈥?38.View Article
    7.Sim, S. J., K. D. Snell, S. A. Hogan, J. Stubbe, C. Rha, and A. J. Sinskey (1997) PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nat. Biotechnol. 15: 63鈥?7.View Article
    8.Riedel, S. L., J. Bader, C. J. Brigham, C. F. Budde, Z. A. Yusof, C. Rha, and A. J. Sinskey (2012) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol. Bioeng. 109: 74鈥?3.View Article
    9.Jendrossek, D. and R. Handrick (2002) Microbial degradation of polyhydroxyalkanoates. Ann. Rev. Microbiol. 56: 403鈥?32.View Article
    10.Doi, Y., S. Kitamura, and H. Abe (1995) Microbial Synthesis and Characterization of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate). Macromol. 28: 4822鈥?828.View Article
    11.Mergaert, J., C. Anderson, A. Wouters, J. Swings, and K. Kersters (1992) Biodegradation of polyhydroxyalkanoates. FEMS Microbiol. Rev. 9: 317鈥?21.View Article
    12.Choi, J. I. and S. Y. Lee (1999) Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol. Bioeng. 62: 546鈥?53.View Article
    13.Hahn, S. K., Y. K. Chang, B. S. Kim, and H. N. Chang (1994) Optimization of microbial poly(3-hydroxybutyrate) recover using dispersions of sodium hypochlorite solution and chloroform. Biotechnol. Bioeng. 44: 256鈥?61.View Article
    14.Kunasundari, B. and K. Sudesh (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express. Polym. Lett. 5: 620鈥?34.View Article
    15.Yang, Y. H., C. Brigham, L. Willis, C. Rha, and A. Sinskey (2011) Improved detergent-based recovery of polyhydroxyalkanoates (PHAs). Biotechnol. Lett. 33: 937鈥?42.View Article
    16.Holmes, A. A. and G. B. Lim (1990) Separation process. US Patent 4,910,145.
    17.Yang, Y. H., C. J. Brigham, C. F. Budde, P. Boccazzi, L. B. Willis, M. A. Hassan, Z. A. Yusof, C. Rha, and A. J. Sinskey (2010) Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Appl. Microbiol. Biotechnol. 87: 2037鈥?045.View Article
    18.York, G. M., J. Lupberger, J. Tian, A. G. Lawrence, J. Stubbe, and A. J. Sinskey (2003) Ralstonia eutropha H16 encodes two and possibly three intracellular Poly[D-(-)-3-hydroxybutyrate] depolymerase genes. J. Bacteriol. 185: 3788鈥?794.View Article
    19.Budde, C. F., A. E. Mahan, J. Lu, C. Rha, and A. J. Sinskey (2010) Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. J. Bacteriol. 192: 5319鈥?328.View Article
    20.Narasimhan, K., K. Yee, A. C. Cearley, D. Levengood, and G. Q. Chen (2007) Solvent extraction of polyhydroxyalkanoates from biomass. US Patent 7,226,765.
    21.Braunegg, G., B. Sonnleitner, and R. M. Lafferty (1978) Rapid Gas-chromatographic method for determination of Poly-betahydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29鈥?7.View Article
    22.Conway, B. R., J. E. Eyles, and H. O. Alpar (1997) A comparative study on the immune responses to antigens in PLA and PHB microspheres. J. Contr. Rel. 49: 1鈥?.View Article
    23.Sudesh, K., H. Abe, and Y. Doi (2000) Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 25: 1503鈥?555.View Article
    24.Riedel, S. L., C. J. Brigham, C. F. Budde, J. Bader, C. Rha, U. Stahl, and A. J. Sinskey (2013) Recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents. Biotechnol. Bioeng. 110: 461鈥?70.View Article
    25.Jiang, X., J. A. Ramsay, and B. A. Ramsay (2006) Acetone extraction of mcl-PHA from Pseudomonas putida KT2440. J. Microbiol. Meth. 67: 212鈥?19.View Article
    26.Horowitz, D. M. and J. K. Sanders (2005) Amorphous, biomimetic granules of polyhydroxybutyrate- preparation, characterization, and biological implications. J. Amer. Chem. Soc. 116: 2695鈥?702.View Article
    27.Woodcock, D. M., P. J. Crowther, J. Doherty, S. Jefferson, E. DeCruz, M. Noyer-Weidner, S. S. Smith, M. Z. Michael, and M. W. Graham (1989) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res. 17: 3469鈥?478.View Article
    28.Simon, R., U. Priefer, and A. Puhler (1983) A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. 1: 784鈥?91.View Article
    29.Budde, C. F., S. L. Riedel, L. B. Willis, C. Rha, and A. J. Sinskey (2011) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl. Environ. Microbiol. 77: 2847鈥?854.View Article
    30.Zhang, Y., J. Praszkier, A. Hodgson, and A. J. Pittard (1994) Molecular analysis and characterization of a broad-host-range plasmid, pEP2. J. Bacteriol. 176: 5718鈥?728.
    31.Krishnan, B. R., P. R. Fobert, U. Seitzer, and V. N. Iyer (1990) Mutations within the replicon of the IncN plasmid pCU1 that affect its Escherichia coli polA-independence but not its autonomous replication ability. Gene. 91: 1鈥?.View Article
    32.Selmer, T., A. Willanzheimer, and M. Hetzel (2002) Propionate CoA-transferase from Clostridium propionicum. Cloning of gene and identification of glutamate 324 at the active site. Eur. J. Biochem. 269: 372鈥?80.View Article
  • 作者单位:Yung-Hun Yang (1)
    Jong-Min Jeon (1)
    Da Hye Yi (1)
    Jung-Ho Kim (1)
    Hyung-Min Seo (1)
    ChoKyun Rha (2)
    Anthony J. Sinskey (3) (4)
    Christopher J. Brigham (3) (5)

    1. Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 143-701, Korea
    2. Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
    3. Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
    4. Engineering Systems Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
    5. Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA, 02139, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:The Korean Society for Biotechnology and Bioengineering
  • ISSN:1976-3816
文摘
Conventional solvent-based methods are still the most practical approaches for recovery of polyhydroxyalkanoate (PHA) polymer from cellular biomass, even though potential alternatives exist, including chemical, mechanical, and enzymatic methods. It is still necessary, however, to avoid dangerous and environmentally unfriendly solvents (e.g., chloroform and dichloromethane) in the polymer recovery process. In the work presented here, we applied various solvent systems to recover PHA from Ralstonia eutropha and recombinant Escherichia coli cells. It was demonstrated that methyl ethyl ketone (MEK) is a promising solvent for PHA recovery from bacterial cells, particularly for the copolymer poly(hydroxybutyrate-cohydroxyvalerate) [P(HB-co-HV)], exhibiting > 90% polymer recovery. Even though MEK did not solubilize PHAs to the same extent as chloroform, it can recover a comparable amount of polymer because of its processing advantages, such as the low viscosity of the MEK/PHA solution, and the lower density of MEK as compared to cellular components. MEK was found to be the best alternative, non-halogenated solvent among examined candidates for recovery of P(HB-co-HV) from cells. The MEK treatment of PHAcontaining cells further allowed us to eliminate several costly and lengthy steps in the extraction process, such as cell lysis, centrifugation, and filtration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700