A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment
详细信息    查看全文
  • 作者:Laura E. Gibbons (1)
    Adam C. Carle (2)
    R. Scott Mackin (3)
    Danielle Harvey (4)
    Shubhabrata Mukherjee (1)
    Philip Insel (3)
    S. McKay Curtis (1)
    Dan Mungas (5)
    Paul K. Crane (1)
  • 关键词:Executive function ; Mild cognitive impairment ; Item response theory ; Composite scores
  • 刊名:Brain Imaging and Behavior
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:6
  • 期:4
  • 页码:517-527
  • 全文大小:244KB
  • 参考文献:1. Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic review. / Neuropsychology Review, 16(1), 17-2. doi:10.1007/s11065-006-9002-x . CrossRef
    2. Baker, F. B., & Kim, S.-H. (2004). / Item response theory: Parameter estimation techniques (2nd ed.). New York: CRC Press.
    3. Cahn-Weiner, D. A., Boyle, P. A., & Malloy, P. F. (2002). Tests of executive function predict instrumental activities of daily living in community-dwelling older individuals. / Applied Neuropsychology, 9(3), 187-91. doi:10.1207/S15324826AN0903_8 . CrossRef
    4. Cardenas, V. A., Chao, L. L., Studholme, C., Yaffe, K., Miller, B. L., Madison, C., et al. (2011). Brain atrophy associated with baseline and longitudinal measures of cognition. / Neurobiology of Aging, 32(4), 572-80. doi:10.1016/j.neurobiolaging.2009.04.011 . CrossRef
    5. Carmichael, O., Mungas, D., Beckett, L., Harvey, D., Tomaszewski Farias, S., Reed, B., et al. (2010). MRI predictors of cognitive change in a diverse and carefully characterized elderly population. / Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2010.01.021 .
    6. Carmichael, O., Schwarz, C., Drucker, D., Fletcher, E., Harvey, D., Beckett, L., et al. (2010). Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. / Archives of Neurology, 67(11), 1370-378. doi:10.1001/archneurol.2010.284 . CrossRef
    7. Chang, Y. L., Jacobson, M. W., Fennema-Notestine, C., Hagler, D. J., Jr., Jennings, R. G., Dale, A. M., et al. (2010). Level of executive function influences verbal memory in amnestic mild cognitive impairment and predicts prefrontal and posterior cingulate thickness. / Cerebral Cortex, 20(6), 1305-313. doi:10.1093/cercor/bhp192 . CrossRef
    8. Crane, P. K., Narasimhalu, K., Gibbons, L. E., Pedraza, O., Mehta, K. M., Tang, Y., et al. (2008). Composite scores for executive function items: demographic heterogeneity and relationships with quantitative magnetic resonance imaging. / Journal of the International Neuropsychological Society: JINS, 14(5), 746-9. doi:10.1017/S1355617708081162 . CrossRef
    9. De Meyer, G., Shapiro, F., Vanderstichele, H., Vanmechelen, E., Engelborghs, S., De Deyn, P. P., et al. (2010). Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. / Archives of Neurology, 67(8), 949-56. doi:10.1001/archneurol.2010.179 . CrossRef
    10. Ewers, M., Walsh, C., Trojanowski, J. Q., Shaw, L. M., Petersen, R. C., Jack, C. R., Jr., et al. (2010). Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. / Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2010.10.019 .
    11. Farias, S. T., Mungas, D., Reed, B. R., Harvey, D., & DeCarli, C. (2009). Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. / Archives of Neurology, 66(9), 1151-157. doi:10.1001/archneurol.2009.106 . CrossRef
    12. Farias, S. T., Mungas, D., Reed, B., Carmichael, O., Beckett, L., Harvey, D., et al. (2011). Maximal brain size remains an important predictor of cognition in old age, independent of current brain pathology. / Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2011.03.017 .
    13. Gomar, J. J., Bobes-Bascaran, M. T., Conejero-Goldberg, C., Davies, P., & Goldberg, T. E. (2011). Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer’s disease neuroimaging initiative. / Archives of General Psychiatry, 68(9), 961-69. doi:10.1001/archgenpsychiatry.2011.96 . CrossRef
    14. Goodglass, H., & Kaplan, D. (1983). / The assessment of aphasia and related disorders (2nd ed.). Philadelphia: Lea & Febiger.
    15. Grambaite, R., Selnes, P., Reinvang, I., Aarsland, D., Hessen, E., Gjerstad, L., et al. (2011). Executive Dysfunction in Mild Cognitive Impairment is Associated with Changes in Frontal and Cingulate White Matter Tracts. / Journal of Alzheimer’s Disease: JAD. doi:10.3233/JAD-2011-110290 .
    16. Jack, C. R., Jr., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., et al. (2008). The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. / J Magn Reson Imaging, 27(4), 685-91. doi:10.1002/jmri.21049 .
    17. Jack, C. R., Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. / Lancet Neurology, 9(1), 119-28. doi:10.1016/S1474-4422(09)70299-6 . CrossRef
    18. Li, Y., Bolt, D. M., & Fu, J. (2006). A comparison of alternative models for testlets. / Applied Psychological Measurement, 30(1), 3-1. CrossRef
    19. Llano, D. A., Laforet, G., & Devanarayan, V. (2011). Derivation of a new ADAS-cog composite using tree-based multivariate analysis: prediction of conversion from mild cognitive impairment to Alzheimer disease. / Alzheimer Disease and Associated Disorders, 25(1), 73-4. doi:10.1097/WAD.0b013e3181f5b8d8 . CrossRef
    20. Marra, C., Ferraccioli, M., Vita, M. G., Quaranta, D., & Gainotti, G. (2011). Patterns of cognitive decline and rates of conversion to dementia in patients with degenerative and vascular forms of MCI. / Current Alzheimer Research, 8(1), 24-1. CrossRef
    21. McDonald, R. P. (1999). / Test theory: a unified treatment. Mahwah: Lawrence Erlbaum.
    22. McDonald, C. R., Gharapetian, L., McEvoy, L. K., Fennema-Notestine, C., Hagler, D. J., Jr., Holland, D., et al. (2010). Relationship between regional atrophy rates and cognitive decline in mild cognitive impairment. / Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2010.03.015 .
    23. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe-tasks: a latent variable analysis. / Cognit Psychol, 41(1), 49-00. CrossRef
    24. Mohs, R. C., Knopman, D., Petersen, R. C., Ferris, S. H., Ernesto, C., Grundman, M., et al. (1997). Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. / Alzheimer Disease and Associated Disorders, 11(Suppl 2), S13-1. CrossRef
    25. Morris, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., van Belle, G., Fillenbaum, G., et al. (1989). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. / Neurology, 39(9), 1159-165. CrossRef
    26. Mungas, D., Harvey, D., Reed, B. R., Jagust, W. J., DeCarli, C., Beckett, L., et al. (2005). Longitudinal volumetric MRI change and rate of cognitive decline. / Neurology, 65(4), 565-71. doi:10.1212/01.wnl.0000172913.88973.0d . CrossRef
    27. Mungas, D., Beckett, L., Harvey, D., Farias, S. T., Reed, B., Carmichael, O., et al. (2010). Heterogeneity of cognitive trajectories in diverse older persons. / Psychology and Aging, 25(3), 606-19. doi:10.1037/a0019502 . CrossRef
    28. Muthén, L. K., & Muthén, B. O. (1998-007). Mplus: statistical analysis with latent variables. (5.1 ed.). Los Angeles, CA: Muthén & Muthén.
    29. Nordlund, A., Rolstad, S., Klang, O., Lind, K., Pedersen, M., Blennow, K., et al. (2008). Episodic memory and speed/attention deficits are associated with Alzheimer-typical CSF abnormalities in MCI. / Journal of the International Neuropsychological Society: JINS, 14(4), 582-90. doi:10.1017/S135561770808079X . CrossRef
    30. Nordlund, A., Rolstad, S., Gothlin, M., Edman, A., Hansen, S., & Wallin, A. (2010). Cognitive profiles of incipient dementia in the Goteborg MCI study. / Dementia and Geriatric Cognitive Disorders, 30(5), 403-10. doi:10.1159/000321352 . CrossRef
    31. Parks, C. M., Iosif, A. M., Farias, S., Reed, B., Mungas, D., & DeCarli, C. (2011). Executive function mediates effects of white matter hyperintensities on episodic memory. / Neuropsychologia, 49(10), 2817-824. doi:10.1016/j.neuropsychologia.2011.06.003 . CrossRef
    32. Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., et al. (2010). Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. / Neurology, 74(3), 201-09. doi:10.1212/WNL.0b013e3181cb3e25 . CrossRef
    33. Reeve, B. B., Hays, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., Teresi, J. A., et al. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: plans for the Patient-Reported Outcomes Measurement Information System (PROMIS). / Medical Care, 45(5 Suppl 1), S22-1. CrossRef
    34. Reitan, R. M., & Wolfson, D. (1985). / The Halstead-Reitan neuropsychological test battery. Tucson: Neuropsychology Press.
    35. Rolstad, S., Berg, A. I., Bjerke, M., Blennow, K., Johansson, B., Zetterberg, H., et al. (2011). Amyloid-beta is associated with cognitive impairment in healthy elderly and subjective cognitive impairment. / Journal of Alzheimer’s Disease: JAD, 26(1), 135-42. doi:10.3233/JAD-2011-110038 .
    36. Salthouse, T. A. (2005). Relations between cognitive abilities and measures of executive functioning. / Neuropsychology, 19(4), 532-45. CrossRef
    37. Schwarz, C., Fletcher, E., DeCarli, C., & Carmichael, O. (2009). Fully-automated white matter hyperintensity detection with anatomical prior knowledge and without FLAIR. / Information Processing in Medical Imaging, 21, 239-51. CrossRef
    38. Shaw, L. M., Vanderstichele, H., Knapik-Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., et al. (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. / Annals of Neurology, 65(4), 403-13. doi:10.1002/ana.21610 . CrossRef
    39. Smith, E. E., Salat, D. H., Jeng, J., McCreary, C. R., Fischl, B., Schmahmann, J. D., et al. (2011). Correlations between MRI white matter lesion location and executive function and episodic memory. / Neurology, 76(17), 1492-499. doi:10.1212/WNL.0b013e318217e7c8 . CrossRef
    40. StataCorp. (2011). / Stata statistical software: release 12. College Station: StataCorp LP.
    41. Tabert, M. H., Manly, J. J., Liu, X., Pelton, G. H., Rosenblum, S., Jacobs, M., et al. (2006). Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. / Archives of General Psychiatry, 63(8), 916-24. doi:10.1001/archpsyc.63.8.916 . CrossRef
    42. Trojanowski, J. Q., Vandeerstichele, H., Korecka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., et al. (2010). Update on the biomarker core of the Alzheimer’s Disease Neuroimaging Initiative subjects. / Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 6(3), 230-38. doi:10.1016/j.jalz.2010.03.008 . CrossRef
    43. Wainer, H., Bradlow, E. T., & Wang, X. (2007). / Testlet response theory and its applications. NY: Cambridge UP. CrossRef
    44. Wechsler, D. (1981). / Wechsler adult intelligence scale-revised. San Antonio: Psychological Corporation.
    45. Wechsler, D. (1987). / Wechsler memory scale-revised. San Antonio: Psychological Corporation.
  • 作者单位:Laura E. Gibbons (1)
    Adam C. Carle (2)
    R. Scott Mackin (3)
    Danielle Harvey (4)
    Shubhabrata Mukherjee (1)
    Philip Insel (3)
    S. McKay Curtis (1)
    Dan Mungas (5)
    Paul K. Crane (1)

    1. Harborview Medical Center, University of Washington, Box 359780, 325 Ninth Avenue, Seattle, WA, 98104, USA
    2. Cincinnati Children’s Hospital Medical Center, University of Cincinnati School of Medicine and University of Cincinnati College of Arts and Sciences, 3333 Burnet Avenue, MLC 7014, Cincinnati, OH, 45229, USA
    3. Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA
    4. Division of Biostatistics, Department of Public Health Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
    5. Department of Neurology, UC Davis Medical Center, 4860 Y Street, Sacramento, CA, 95817, USA
文摘
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) measures abilities broadly related to executive function (EF), including WAIS-R Digit Symbol Substitution, Digit Span Backwards, Trails A and B, Category Fluency, and Clock Drawing. This study investigates whether a composite executive function measure based on these multiple indicators has better psychometric characteristics than the widely used individual components. We applied item response theory methods to 800 ADNI participants to derive an EF composite score (ADNI-EF) from the above measures. We then compared ADNI-EF with component measures in 390 longitudinally-followed participants with mild cognitive impairment (MCI) with respect to: (1) Ability to detect change over time; (2) Ability to predict conversion to dementia; (3) Strength of cross-sectional association with MRI-derived measures of structures involved in frontal systems, and (4) Strength of baseline association with cerebrospinal fluid (CSF) levels of amyloid β1-42, total tau, and phosphorylated tau181P. ADNI-EF showed the greatest change over time, followed closely by Category Fluency. ADNI-EF needed a 40?% smaller sample size to detect change. ADNI-EF was the strongest predictor of AD conversion. ADNI-EF was the only measure significantly associated with all the MRI regions, though other measures were more strongly associated in a few of the regions. ADNI-EF was associated with all the CSF measures. ADNI-EF appears to be a useful composite measure of EF in MCI, as good as or better than any of its composite parts. This study demonstrates an approach to developing a psychometrically sophisticated composite score from commonly-used tests.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700