Cosmic constraint on the unified model of dark sectors with or without a cosmic string fluid in the varying gravitational constant theory
详细信息    查看全文
  • 作者:Jianbo Lu ; Yanfeng Xu ; Yabo Wu
  • 刊名:The European Physical Journal C - Particles and Fields
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:75
  • 期:10
  • 全文大小:1,301 KB
  • 参考文献:1.K.I. Umezu, K. Ichiki, M. Yahiro, Phys. Rev. D 72, 044010 (2005)CrossRef ADS
    2.M. Biesiada, B. Malec, Mon. Not. Roy. Astron. Soc. 350, 644 (2004). arXiv:鈥媋stro-ph/鈥?303489
    3.O.G. Benvenuto et al., Phys. Rev. D 69, 082002 (2004)CrossRef ADS
    4.J.P.W. Verbiest et al., Astrophys. J. 679, 675 (2008). arXiv:鈥?801.鈥?589
    5.E. Gaztanaga et al., Phys. Rev. D 65, 023506 (2002). arXiv:鈥媋stro-ph/鈥?109299
    6.S.E. Thorsett, Phys. Rev. Lett. 77, 1432 (1996). arXiv:鈥媋stro-ph/鈥?607003
    7.L.X. Xu, J.B. Lu, Y.T. Wang, Eur. Phys. J. C 72, 1883 (2012). arXiv:鈥?204.鈥?798
    8.P.X. Wu, H.W. Yu, Phys. Lett. B 644, 16 (2007)MathSciNet CrossRef ADS
    9.K. Zhang, P.X. Wu, H.W. Yu, JCAP 01, 048 (2014)CrossRef ADS
    10.A. Ali, S. Dutta, E. N. Saridakis, A. A. Sen. arXiv:鈥?004.鈥?474
    11.C. Ranjit, P. Rudra, S. Kundu. arXiv:鈥?304.鈥?713
    12.S. Ghose, A. Saha, B.C. Paul. arXiv:鈥?203.鈥?113
    13.S. Mukherjee, B.C. Paul, N.K. Dadhich, S.D. Maharaj, A. Beesham, Class. Quant. Grav. 23, 6927 (2006)MATH MathSciNet CrossRef ADS
    14.S. Ghose, P. Thakur, B.C. Paul, Mon. Not. R. Astron. Soc. 421, 20 (2012). arXiv:鈥?105.鈥?303
    15.T. Harko, M. J. Lake. arXiv:鈥?409.鈥?454
    16.F. Niedermann, R. Schneider, Phys. Rev. D 91, 064010 (2015). arXiv:鈥?412.鈥?750
    17.S. Kumar, A. Nautiyal, A. A. Sen. arXiv:鈥?207.鈥?024
    18.O. S. Sazhina, D. Scognamiglio, M. V. Sazhin. arXiv:鈥?312.鈥?106
    19.M. van de Meent, Phys. Rev. D 87, 025020 (2013). arXiv:鈥?211.鈥?365
    20.P. A. R. Ade, et al. arXiv:鈥?303.鈥?085
    21.A. Lewis, S. Bridle, Phys. Rev. D 66, 103511 (2002)CrossRef ADS
    22.S. Capozziello, V.F. Cardone, M. Funaro, S. Andreon, Phys. Rev. D 70, 123501 (2004)CrossRef ADS
    23.J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005)CrossRef ADS
    24.L. Xu, JCAP 04, 025 (2012). arXiv:鈥?005.鈥?055
    25.L. Verde et al., Mon. Not. Roy. Astron. Soc. 335, 432 (2002). arXiv:鈥媋stro-ph/鈥?112161
    26.E.V. Linder, Astropart. Phys. 29, 336鈥?39 (2008). arXiv:鈥?709.鈥?113
    27.C. Blake et al., Mon. Not. Roy. Astron. Soc. 415, 2876 (2011). arXiv:鈥?104.鈥?948
    28.R. Reyes et al., Nature. 464, 256 (2010). arXiv:鈥?003.鈥?185
    29.M. Tegmark et al., SDSS Collaboration. Phys. Rev. D 74, 123507 (2006). arXiv:鈥媋stro-ph/鈥?608632
    30.N.P. Ross et al., Mon. Not. Roy. Astron. Soc. 381(2), 573鈥?88, (2007). arXiv:鈥媋stro-ph/鈥?612400
    31.L. Guzzo et al., Nature 451, 541 (2008). arXiv:鈥?802.鈥?944
    32.J. da Angela et al., Mon. Not. Roy. Astron. Soc. 383(2), 565鈥?80, (2008). arXiv:鈥媋stro-ph/鈥?612401
    33.R. Amanullah et al., Supernova Cosmology Project Collaboration. arXiv:鈥?004.鈥?711
    34.G. Hinshaw et al. arXiv:鈥媋stro-ph/鈥?212.鈥?226
    35.E. Gaztanaga, R. Miquel, E. Sanchez, Phys. Rev. Lett. 103, 091302 (2009)CrossRef ADS
    36.C. Blake et al. arXiv:鈥?108.鈥?635
    37.F. Beutler et al. arXiv:鈥?106.鈥?366
    38.W.J. Percival et al., Mon. Not. R. Astron. Soc. 401, 2148 (2010). arXiv:鈥媋stro-ph/鈥?907.鈥?660
    39.J.B. Lu, L.X. Xu, H.Y. Tan, S.S. Gao, Phys. Rev. D 89, 063526 (2014)CrossRef ADS
    40.M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)CrossRef ADS
    41.A. Sandage, Ann. Rev. Astron. Astrophys. 26, 561 (1988)CrossRef ADS
    42.N. Pires, Z. Zhu, J.S. Alcaniz, Phys. Rev. D 73, 123530 (2006)CrossRef ADS
    43.M.A. Dantas, J.S. Alcaniz, D. Jain, A. Dev, Astron. Astrophys. 467, 421 (2007)MATH CrossRef ADS
    44.E. Komatsu et al., WMAP Collaboration. arXiv:鈥?001.鈥?538
    45.B.E. Schaefer, Astrophys. J. 660, 16 (2007). arXiv:鈥媋stro-ph/鈥?612285
    46.L. Amati et al., Mon. Not. Roy. Astron. Soc. 391, 577 (2008). arXiv:鈥?805.鈥?377
    47.Y. Wang, Phys. Rev. D 78, 123532 (2008)CrossRef ADS
    48.M.C. Bento, O. Bertolami, A.A. Sen, Phys. Lett. B 575, 172 (2003)CrossRef ADS
    49.M. Li, X.D. Li, X. Zhang, Sci. China. Ser. G 53, 1631 (2010)CrossRef
    50.P.T. Silva, O. Bertolami, Astrophys. J. 599, 829 (2003)CrossRef ADS
    51.A.C.C. Guimaraes, J.V. Cunha, J.A.S. Lima, JCAP 0910, 010 (2009)CrossRef ADS
    52.M. Szydlowski, W. Godlowski, Phys. Lett. B 633, 427 (2006)MATH MathSciNet CrossRef ADS
    53.R.G. Cai, Q. Su, H.B. Zhang, JCAP. arXiv:鈥媋stro-ph/鈥?001.鈥?207
    54.R.G. Cai, Q.P. Su, Phys. Rev. D 81, 103514 (2010)CrossRef ADS
    55.Y.G. Gong, R.G. Cai, Y. Chen, Z.H. Zhu, JCAP 01, 019 (2010)ADS
    56.Y.G. Gong, B. Wang, R.G. Cai, JCAP 04, 019 (2010)ADS
    57.R. Gannouji, D. Polarski, JCAP 0805, 018 (2008)CrossRef
    58.J.B. Lu, L.X. Xu, M.L. Liu, Phys. Lett. B 699, 246鈥?50 (2011)CrossRef ADS
    59.Z.X. Li, P.X. Wu, H.W. Yu et al., Sci. China Phys. Mech. Astron. 57, 381 (2014)CrossRef
    60.J.F. Zhang, L. Zhao, X. Zhang, Sci. China Phys. Mech. Astron. 57, 387 (2014)
    61.S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 72, 123519 (2005)
    62.L. Perivolaropoulos, Phys. Rev. D 71, 063503 (2005)CrossRef ADS
    63.E. Di Pietro, J.F. Claeskens, Mon. Not. Roy. Astron. Soc. 341, 1299 (2003)CrossRef ADS
    64.C. Cheng, Q.G. Huang, Sci China Phys. Mech. Astron. 58, 099801 (2015)
    65.J.B. Lu et al., Sci China Phys. Mech. Astron. 57, 796 (2014)CrossRef ADS
    66.V. Acquaviva, L. Verde, JCAP 0712, 001 (2007)CrossRef ADS
    67.E. Garcia-Berro, E. Gaztanaga, J. Isern, O. Benvenuto, L. Althaus. arXiv:鈥媋stro-ph/鈥?907440
    68.A. Riazuelo, J. Uzan, Phys. Rev. D 66, 023525 (2002)CrossRef ADS
    69.L.X. Xu, Phys. Rev. D 91, 063008 (2015)CrossRef ADS
    70.L.X. Xu, JCAP 02, 048 (2014)CrossRef ADS
    71.N. Suzuki, et al., Astrophys. J. 746, 85 (2012). http://鈥媠upernova.鈥媗bl.鈥媑ov/鈥婾nion/鈥?/span>
    72.J.B. Lu, D.H. Geng, L.X. Xu, Y.B. Wu, M.L. Liu, JHEP 02, 071 (2015)MathSciNet CrossRef ADS
    73.Z.X. Li, P.X. Wu, H.W. Yu, Z.H. Zhu, Phys. Rev. D 87, 103013 (2013)CrossRef ADS
    74.S. Nesseris, J. Garcia-Bellido, JCAP 11, 033 (2012). arXiv:鈥媋stro-ph/鈥?205.鈥?364
    75.D.B. Guenther, L.M. Krauss, P. Demarque, Astrophys. J. 498, 871 (1998)CrossRef ADS
    76.J.G. Williams, S.G. Turyshev, D.H. Boggs, Phys. Rev. Lett. 93, 261101 (2004). arXiv:鈥媑r-qc/鈥?411113
    77.C.J. Copi, A.N. Davies, L.M. Krauss, Phys. Rev. Lett. 92, 171301 (2004)CrossRef ADS
    78.L.X. Xu, Y.D. Chang, Phys. Rev. D 88, 127301 (2013). arXiv:鈥?310.鈥?532
    79.T. Padmanabhan, Structure formation in the universe. (Cambridge University Press, 1993)
  • 作者单位:Jianbo Lu (1)
    Yanfeng Xu (1)
    Yabo Wu (1)

    1. Department of Physics, Liaoning Normal University, Dalian, 116029, People鈥檚 Republic of China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Quantum Field Theory
    Nuclear Physics, Heavy Ions and Hadrons
    Physics beyond the Standard Model
    Measurement Science and Instrumentation
    Astronomy, Astrophysics and Cosmology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1434-6052
文摘
Observations indicate that most of the universal matter is invisible and the gravitational constant G(t) maybe depends on time. A theory of the variational G (VG) is explored in this paper, naturally producing the useful dark components in the universe. We utilize the following observational data: lookback time data, model-independent gamma ray bursts, growth function of matter linear perturbations, type Ia supernovae data with systematic errors, CMB, and BAO, to restrict the unified model (UM) of dark components in VG theory. Using the best-fit values of the parameters with the covariance matrix, constraints on the variation of G are \(\left( \frac{G}{G_{0}}\right) _{z=3.5}\simeq 1.0015^{+0.0071}_{-0.0075}\) and \(\left( \frac{\dot{G}}{G}\right) _{\mathrm{today}}\simeq -0.7252^{+2.3645}_{-2.3645}\times 10^{-13}~\mathrm{year}^{-1}\), with small uncertainties around the constants. The limit on the equation of state of dark matter is \(w_{0\mathrm{dm}}=0.0072^{+0.0170}_{-0.0170}\), assuming \(w_{0\mathrm{de}}=-1\) in the unified model, and the dark energy is \(w_{0de}=-0.9986^{+0.0011}_{-0.0011}\), assuming \(w_{0\mathrm{dm}}=0\) a priori. The restrictions on the UM parameters are \(B_{s}=0.7442^{+0.0137+0.0262}_{-0.0132-0.0292}\) and \(\alpha =0.0002^{+0.0206+0.0441}_{-0.0209-0.0422}\) with \(1\sigma \) and \(2\sigma \) confidence level. In addition, the effects of a cosmic string fluid on the unified model in VG theory are investigated. In this case it is found that the \(\Lambda \)CDM (\(\Omega _{s}=0\), \(\beta =0\), and \(\alpha =0\)) is included in this VG-UM model at \(1\sigma \) confidence level, and larger errors are given: \(\Omega _{s}=-0.0106^{+0.0312+0.0582}_{-0.0305-0.0509}\) (dimensionless energy density of cosmic string), \(\left( \frac{G}{G_{0}}\right) _{z=3.5}\simeq 1.0008^{+0.0620}_{-0.0584}\), and \(\left( \frac{\dot{G}}{G}\right) _{\mathrm{today}}\simeq -0.3496^{+26.3135}_{-26.3135}\times 10^{-13}~\mathrm{year}^{-1}\).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700