Upregulation of long noncoding RNA TMEVPG1 enhances T helper type 1 cell response in patients with Sjögren syndrome
详细信息    查看全文
  • 作者:Juan Wang ; Huiyong Peng ; Jie Tian ; Jie Ma ; Xinyi Tang ; Ke Rui…
  • 关键词:Long noncoding RNA ; TMEVPG1 ; T helper type 1 cells ; Sjögren syndrome
  • 刊名:Immunologic Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:64
  • 期:2
  • 页码:489-496
  • 全文大小:723 KB
  • 参考文献:1.Singh N, Cohen PL. The T cell in Sjögren’s syndrome: force majeure, not spectateur. J Autoimmun. 2012;39(3):229–33.CrossRef PubMed PubMedCentral
    2.Fox RI, Kang HI, Ando D, et al. Cytokine mRNA expression in salivary gland biopsies of Sjögren’s syndrome. J Immunol. 1994;152:5532–9.PubMed
    3.Boumba D, Skopouli FN, Moutsopoulos HM. Cytokine mRNA expression in the labial salivary gland tissues from patients with primary Sjögren’s syndrome. Br J Rheumatol. 1995;34:326–33.CrossRef PubMed
    4.Kolkowski EC, Reth P, Pelusa F, et al. Th1 predominance and perforin expression in minor salivary glands from patients with primary Sjögren’s syndrome. J Autoimmun. 1999;13(1):155–62.CrossRef PubMed
    5.Li X, Xu B, Wang Y, et al. Anti-inflammatory effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) on non-obese diabetic mice with Sjögren’s syndrome. Int J Clin Exp Pathol. 2014;7(8):4886–94.PubMed PubMedCentral
    6.Cha S, Brayer J, Gao J, et al. A dual role for interferon-gamma in the pathogenesis of Sjögren’s syndrome-like autoimmune exocrinopathy in the nonobese diabetic mouse. Scand J Immunol. 2004;60(6):552–65.CrossRef PubMed
    7.Lin X, Rui K, Deng J, et al. Th17 cells play a critical role in the development of experimental Sjögren’s syndrome. Ann Rheum Dis. 2015;74(6):1302–10.CrossRef PubMed
    8.Peng H, Liu Y, Tian J, et al. Decreased expression of microRNA-125a-3p upregulates interleukin-23 receptor in patients with Hashimoto’s thyroiditis. Immunol Res. 2015;62(2):129–36.CrossRef PubMed
    9.Chen J, Tian J, Tang X, et al. MiR-346 regulates CD4+ CXCR5+ T cells in the pathogenesis of Graves’ disease. Endocrine. 2015;49(3):752–60.CrossRef PubMed
    10.Pauley KM, Stewart CM, Gauna AE, et al. Altered miR-146a expression in Sjögren syndrome and its functional role in innate immunity. Eur J Immunol. 2011;41(7):2029–39.CrossRef PubMed PubMedCentral
    11.Spierings DC, McGoldrick D, Hamilton-Easton AM, et al. Ordered progression of stage-specific miRNA profiles in the mouse B2 B-cell lineage. Blood. 2011;117(20):5340–9.CrossRef PubMed PubMedCentral
    12.Chiyomaru T, Fukuhara S, Saini S, et al. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J Biol Chem. 2014;289(18):12550–65.CrossRef PubMed PubMedCentral
    13.Van Roosbroeck K, Pollet J, Calin GA. MiRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn. 2013;13(2):183–204.CrossRef PubMed
    14.Mourtada-Maarabouni M, Hasan AM, Farzaneh F, et al. Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol Pharmacol. 2010;78(1):19–28.CrossRef PubMed PubMedCentral
    15.Gomez JA, Wapinski OL, Yang YW, et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell. 2013;152(4):743–54.CrossRef PubMed PubMedCentral
    16.Collier SP, Collins PL, Williams CL, et al. Cutting edge: influence of TMEVPG1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J Immunol. 2012;189(5):2084–8.CrossRef PubMed PubMedCentral
    17.Collier SP, Henderson MA, Tossberg JT, et al. Regulation of the Th1 genomic locus from Ifn-g. through Tmevpg1 by T-bet. J Immunol. 2014;193(8):3959–65.CrossRef PubMed PubMedCentral
    18.Jonsson R, Vogelsang P, Volchenkov R, et al. The complexity of Sjögren’s syndrome: novel aspects on pathogenesis. Immunol Lett. 2011;141(1):1–9.CrossRef PubMed
    19.Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American- European Consensus Group. Ann Rheum Dis. 2002;61(6):554–8.CrossRef PubMed PubMedCentral
    20.Vasudevan A, Bhide PG. Angiogenesis in the embryonic CNS: a new twist on an old tale. Cell Adh Migr. 2008;2(3):167–9.CrossRef PubMed PubMedCentral
    21.Hernandez-Molina G, Leal-Alegre G, Michel-Peregrina M. The meaning of anti-Ro and anti-La antibodies in primary Sjögren’s syndrome. Autoimmun Rev. 2011;10(3):123–5.CrossRef PubMed
    22.Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106(28):11667–72.CrossRef PubMed PubMedCentral
    23.Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.CrossRef PubMed PubMedCentral
    24.Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006; 15 Spec No 1:R17-29.
    25.Jimenez SA, Piera-Velazquez S. Potential role of human-specific genes, human-specific microRNAs and human-specific non-coding regulatory RNAs in the pathogenesis of systemic sclerosis and Sjögren syndrome. Autoimmun Rev. 2013;12(11):1046–51.CrossRef PubMed PubMedCentral
    26.Vigneau S, Rohrlich PS, Brahic M, et al. Tmevpg1, a candidate gene for the control of Theiler’s virus persistence, could be implicated in the regulation of gamma interferon. J Virol. 2003;77(10):5632–8.CrossRef PubMed PubMedCentral
    27.Gonzalez-Navajas JM, Lee J, David M, et al. Immunomodulatory functions of type I interferons. Nat Rev Immunol. 2012;12(2):125–35.PubMed PubMedCentral
    28.Li H, Ice JA, Lessard CJ, et al. Interferons in Sjögren’s syndrome: genes, mechanisms, and effects. Front Immunol. 2013;4:290.PubMed PubMedCentral
    29.Hjelmervik TO, Petersen K, Jonassen I, et al. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005;52(5):1534–44.CrossRef PubMed
    30.Hall JC, Baer AN, Shah AA, et al. Molecular subsetting of interferon pathways in Sjögren’s syndrome. Arthriti Rheumatol. 2015;67(9):2437–46.CrossRef
    31.Nguyen CQ, Peck AB. The interferon-signature of Sjögren’s syndrome: how unique biomarkers can identify underlying inflammatory and immunopathological mechanisms of specific diseases. Front Immunol. 2013;4:142.CrossRef PubMed PubMedCentral
    32.Hall JC, Casciola-Rosen L, Berger AE, et al. Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc Natl Acad Sci USA. 2012;109(43):17609–14.CrossRef PubMed PubMedCentral
    33.Hertzog P, Forster S, Samarajiwa S. Systems biology of interferon responses. J Interferon Cytokine Res. 2011;31(1):5–11.CrossRef PubMed
    34.Nezos A, Gravani F, Tassidou A, et al. Type I and II interferon signatures in Sjögren’s syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjögren’s related lymphomagenesis. J Autoimmun. 2015;S0896–8411(15):30006–8.
    35.Ogawa N, Li P, Li Z, et al. Involvement of the interferon-gamma-induced T cell-attracting chemokines, interferon-gamma-inducible 10-kd protein (CXCL10) and monokine induced by interferon-gamma (CXCL9), in the salivary gland lesions of patients with Sjögren’s syndrome. Arthritis Rheum. 2002;46:2730–41.CrossRef PubMed
  • 作者单位:Juan Wang (1) (2)
    Huiyong Peng (1)
    Jie Tian (2)
    Jie Ma (2)
    Xinyi Tang (1)
    Ke Rui (2)
    Xinyu Tian (2)
    Yungang Wang (2)
    Jianguo Chen (1)
    Liwei Lu (3)
    Huaxi Xu (2)
    Shengjun Wang (1) (2)

    1. Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Dianli Road 8, Zhenjiang, 212002, China
    2. Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, 212013, China
    3. Department of Pathology, The University of Hong Kong, Hong Kong, China
  • 刊物主题:Allergology; Immunology; Medicine/Public Health, general; Internal Medicine;
  • 出版者:Springer US
  • ISSN:1559-0755
文摘
Long noncoding RNAs (lncRNA) play key roles in regulating autoimmunity and immunity balance. LncRNA TMEVPG1, which is encoded by a gene located near the Ifn gene, contributes to interferon gamma expression. We investigated the expression of TMEVPG1 in patients with Sjögren syndrome (SS) to determine its role in the pathogenesis of SS. In this study, we detected the relative expression of TMEVPG1 in CD4+ T cells of 25 SS patients and 25 healthy donors. Moreover, the proportion of Th1 cells and T-bet levels was also analyzed. Furthermore, we explored the correlation between the expression of TMEVPG1 and the level of autoantibodies, erythrocyte sedimentation rate (ESR) and IgG in SS patients. Our results indicated that the proportion of Th1 cells and the levels of TMEVPG1 and T-bet were increased in SS patients. In addition, the level of expression of TMEVPG1 was correlated with the level of SSA, ESR and IgG. Our data suggest that upregulation of lncRNA TMEVPG1 may be involved in the pathogenesis of Sjögren syndrome.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700