Chronic kidney disease: pathological and functional assessment with diffusion tensor imaging at 3T MR
详细信息    查看全文
  • 作者:Zhiling Liu ; Ying Xu ; Jie Zhang ; Junhui Zhen ; Rong Wang ; Shifeng Cai…
  • 关键词:Magnetic resonance imaging ; Diffusion tensor imaging ; Chronic renal diseases ; Renal function ; Renal pathology
  • 刊名:European Radiology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:25
  • 期:3
  • 页码:652-660
  • 全文大小:2,181 KB
  • 参考文献:1. Levey AS, Stevens LA, Coresh J (2009) Conceptual model of CKD: applications and implications. Am J Kidney Dis 53:S4-6 CrossRef
    2. Coresh J, Selvin E, Stevens LA et al (2007) Prevalence of chronic kidney disease in the United States. JAMA 298:2038-047 CrossRef
    3. Jiang SH, Karpe KM, Talaulikar GS (2011) Safety and predictors of complications of renal biopsy in the outpatient setting. Clin Nephrol 76:464-69 CrossRef
    4. Eisenberger U, Thoeny HC, Binser T et al (2010) Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol 20:1374-383 CrossRef
    5. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR (2005) Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 235:911-17 CrossRef
    6. Namimoto T, Yamashita Y, Mitsuzaki K, Nakayama Y, Tang Y, Takahashi M (1999) Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging. J Magn Reson Imaging 9:832-37 CrossRef
    7. Xu X, Fang W, Ling H, Chai W, Chen K (2010) Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease: initial study. Eur Radiol 20:978-83 CrossRef
    8. Blondin D, Lanzman RS, Mathys C et al (2009) Functional MRI of transplanted kidneys using diffusion-weighted imaging. R?fo 181:1162-167
    9. Thoeny HC, De Keyzer F (2011) Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259:25-8 CrossRef
    10. Dixon WT (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging: a modest proposal with tremendous potential. Radiology 168:566-67 CrossRef
    11. Hueper K, Gutberlet M, Rodt T et al (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction-initial results. Eur Radiol 21:2427-433 CrossRef
    12. Gaudiano C, Clementi V, Busato F et al (2013) Diffusion tensor imaging and tractography of the kidneys: assessment of chronic parenchymal diseases. Eur Radiol 23:1678-685 CrossRef
    13. Lanzman RS, Ljimani A, Pentang G et al (2013) Kidney transplant: functional assessment with diffusion-tensor MR imaging at 3?T. Radiology 266:218-25 CrossRef
    14. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol 29:632-41 CrossRef
    15. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604-12 CrossRef
    16. Notohamiprodjo M, Glaser C, Herrmann KA et al (2008) Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Invest Radiol 43:677-85 CrossRef
    17. Li Q, Li J, Zhang L, Chen Y, Zhang M, Yan F (2014) Diffusion-weighted imaging in assessing renal pathology of chronic kidney disease: A preliminary clinical study. Eur J Radiol 83:756-62 CrossRef
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Imaging and Radiology
    Diagnostic Radiology
    Interventional Radiology
    Neuroradiology
    Ultrasound
    Internal Medicine
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1084
文摘
Objective Our objective was to evaluate pathological and functional changes in chronic kidney disease (CKD) using diffusion tensor imaging (DTI) at 3?T. Methods There were fifty-one patients with CKD who required biopsy and 19 healthy volunteers who were examined using DTI at 3?T. The mean values of fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) were obtained from the renal parenchyma (cortex and medulla). Correlations between imaging results and the estimated glomerular filtration rate (eGFR), as well as pathological damage (glomerular lesion and tubulointerstitial injury), were evaluated. Results The renal cortical FA was significantly lower than the medullary in both normal and affected kidneys (p--.001). The parenchymal FA was significantly lower in patients than healthy controls, regardless of whether eGFR was reduced. There were positive correlations between eGFR and FA (cortex, r--.689, p--.000; and medulla, r--.696, p--.000), and between eGFR and ADC (cortex, r--.310, p--.017; and medulla, r--.356, p--.010). Negative correlations were found between FA and the glomerular lesion (cortex, r--0.499, p--.000; and medulla, r--0.530, p--.000), and between FA and tubulointerstitial injury (cortex, r--0.631, p--.000; and medulla, r--0.724, p--.000). Conclusion DTI is valuable for noninvasive assessment of renal function and pathology in patients with CKD. A decrease in FA could identify the glomerular lesions, tubulointerstitial injuries, and eGFR. Key Points -DTI can evaluate CKD regardless of whether the eGFR is reduced. -DTI allows the assessment of renal pathology changes. -FA appears sensitive and stable in detecting renal pathology and function.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700