Heat shock response as a cue for phenotypic variability: a study of psychrotrophic and mesophilic strains of Cellulosimicrobium cellulans
详细信息    查看全文
  • 作者:Rupesh Kumar Sinha (1)
    Kottekkatu Padinchati Krishnan (1)
    Angshuman Sarkar (2)
  • 关键词:Heat shock protein ; Thermotolerance ; Bacteria ; Antarctica
  • 刊名:Annals of Microbiology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:62
  • 期:4
  • 页码:1565-1572
  • 全文大小:434KB
  • 参考文献:1. Antony R, Krishnan KP, Thomas S, Abraham WP, Thamban M (2009) Phenotypic and molecular identification of / Cellullosimicrobium cellulans isolated from Antarctic snow. Antonie Von Leeuwenhoek 96:627-34 CrossRef
    2. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54 CrossRef
    3. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351-66 CrossRef
    4. Fan CY, Lee S, Cyr DM (2003) Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8:309-6 CrossRef
    5. Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73-2 CrossRef
    6. Gounot AM (1991) Bacterial life at low temperature: physiological aspects and biotechnological implications. J Appl Microbiol 71:386-97 CrossRef
    7. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574-81 CrossRef
    8. Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria—occurrence and significance in polar and temperate marine habitats. Cell Mol Biol 50:553-61
    9. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin.Physiology and mechanism. Annu Rev Cell Dev Biol 23:115-5
    10. Inniss WE, Ingraham JL (1978) Microbial life at low temperatures: mechanisms and molecular aspects. Academic, New York, pp?73-04
    11. Kogut M, Russell NJ (1987) Life at the limits: considerations on how bacteria can grow at extremes of temperature and pressure, or with high concentrations of ions and solutes. Sci Prog (London) 71:381-99
    12. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680-85 CrossRef
    13. Lehel C, Wada H, Kovács E, T?r?k Z, Gombos Z, Horváth I, Murata N, Vigh L (1992) Heat shock protein synthesis of the cyanobacterium Synechocystis PCC 6803: purification of the GroEL-related chaperonin. Plant Mol Biol 18:327-36 CrossRef
    14. Martìnez-Rosales C, Castro-Sowinski S (2011) Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Res 30:7123. doi:10.3402/polar.v30i0.7123 CrossRef
    15. McCallum KL, Heikkila JJ, Inniss WE (1986) Temperature-dependent pattern of heat shock protein synthesis in psychrophilic and psychrotrophic microorganisms. Can J Microbiol 132:516-21 CrossRef
    16. McCallum KL, Butler BJ, Inniss WE (1989) Stress or heat shock protein synthesis and cellular filamentation in psychrophilic and psychrotrophic bacteria. Arch Microbiol 152:148-53 CrossRef
    17. Neidhardt FC, VanBogelen RA (1987) Heat shock response. Am Soc Microbiol 2:1334-345
    18. Ohtsuka K, Hata M (2000) Molecular chaperone function of mammalian Hsp70 and Hsp40—a review. Int J Hyperthermia 16(3):231-5 CrossRef
    19. Pesciaroli C, Cupini F, Selbmann L, Barghini P, Fenice M (2011) Temperature preferences of bacteria isolated from seawater collected in Kandalaksha Bay, White Sea, Russia. Polar Biol. doi:10.1007/s00300-011-1091-1
    20. Piette F, D’Amico S, Mazzucchelli G, Danchin A, Leprince P, Feller G (2011) Life in the cold: a proteomic study of cold-repressed proteins in the Antarctic bacterium / Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77(11):3881-883 CrossRef
    21. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092-101 CrossRef
    22. Schumann P, Weiss N, Stackebrandt E (2001) Reclassification of / Cellulomonas cellulans (Stackebrandt and Keddie 1986) as / Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Sys Evol Microbiol 51:1007-010 CrossRef
    23. VanBogelen R, Acton MA, Neidhardt FC (1987) Induction of heat shock regulon does not produce thermotolerance in / Escherichia coli. Genes Dev 1:525-31 CrossRef
    24. Wang X-W, Zheng R-Y (2005) / Chaetomium acropullum sp. nov.( / Chaetomiaceae, Ascomycota), a new psychrotolerant mesophilic species from China. Nova Hedwigia 80:413-17 CrossRef
    25. Yamamori T, Yura T (1980) Temperature-induced synthesis of specific proteins in / Escherichia coli: evidence for transcriptional control. J Bacteriol 142:843-51
    26. Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria land, Antarctica. Polar Biol 16:53-1
  • 作者单位:Rupesh Kumar Sinha (1)
    Kottekkatu Padinchati Krishnan (1)
    Angshuman Sarkar (2)

    1. National Centre for Antarctic and Ocean Research, Vasco da Gama, Goa, India
    2. Department of Biological Sciences, Birla Institute of Technology and Science, Goa Campus, Goa, India
  • ISSN:1869-2044
文摘
We report the expression pattern of heat shock proteins (HSPs) in an Antarctic psychrotrophic strain of Cellulosimicrobium cellulans (DSM 22151) by comparing with its mesophilic counterpart (DSM 43879T) at different temperatures. In both strains, the synthesis of HSPs declined with growth phase. The Antarctic isolate could upregulate 60?kDa, 52?kDa and 41.6?kDa HSPs at 60°C while for its mesophilic counterpart, regulation was restricted to a 64?kDa fraction. The highly unstable nature of this fraction could have led to the impaired thermotolerance exhibited by the mesophilic strain. The downshift of thermal shock from 60°C to 45°C resulted in further upregulation of HSPs in the psychrotrophic strain, while there was no marked variation in the mesophilic strain. This work highlights the significance of a 60?kDa protein in the Antarctic strain of C. cellulans and also indicates the role of a 52?kDa protein in the previously reported heat shock response. Contrary to expectations, the psychrotrophic strain was found to have better mechanisms to tolerate higher temperatures—a property that could give valuable insights into the evolution and adaptation of cold-adapted bacteria.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700