Surface plasmon-enhanced photochemical reactions on noble metal nanostructures
详细信息    查看全文
  • 作者:De-Yin Wu (1)
    Meng Zhang (1)
    Liu-Bin Zhao (1)
    Yi-Fan Huang (1)
    Bin Ren (1)
    Zhong-Qun Tian (1)

    1. State Key Laboratory of Physical Chemistry of Solid Surfaces
    ; Department of Chemistry ; College of Chemistry and Chemical Engineering ; Collaborative Innovation Center of Chemistry for Energy Materials ; Xiamen University ; Xiamen ; 361005 ; China
  • 关键词:surface plasmon resonance ; plasmon ; enhanced chemical reaction ; p ; aminothiophenol ; density functional theory ; noble metal nanostructures
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:58
  • 期:4
  • 页码:574-585
  • 全文大小:1,173 KB
  • 参考文献:1. Hutchings, GJ (2006) Catalysis by Gold. Imperial College Press, Singapore
    2. Parker, JF, Fields-Zinna, CA, Murray, RW (2010) The story of a monodisperse gold nanoparticle: Au25L18. Accounts Chem Res 43: pp. 1289-1296 CrossRef
    3. Moskovits, M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57: pp. 783-826 CrossRef
    4. Tian, ZQ, Ren, B, Wu, DY (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106: pp. 9463-9483 CrossRef
    5. Ru, EC, Etchegoin, PG (2009) Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Elsevier, Amsterdam
    6. Johnson, PR, Christy, RW (1972) Optical constants of the noble metals. Phys Rev B 6: pp. 4370-4379 CrossRef
    7. Manjavacas, A, Liu, JG, Kulkarni, V, Nordlander, P (2014) Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8: pp. 7630-7638 CrossRef
    8. Xiao, M, Jiang, R, Wang, F, Fang, C, Wang, J, Yu, JC (2013) Plasmon-enhanced chemical reactions. J Mater Chem A 1: pp. 5790-5805 CrossRef
    9. Baffou, G, Quidant, R (2014) Nanoplasmonics for chemistry. Chem Soc Rev 43: pp. 3898-3910 CrossRef
    10. Menzel, D (2012) Electronically induced surface reactions: evolution, concepts, and perspectives. J Chem Phys 137: pp. 091702 CrossRef
    11. Govorov, AO, Zhang, H, Gun鈥檏o, YK (2013) Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J Phys Chem C 117: pp. 16616-16631 CrossRef
    12. Christopher, P, Xin, H, Linic, S (2011) Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chem 3: pp. 467-472
    13. Zhao, LB, Zhang, M, Huang, YF, Williams, CT, Wu, DY, Ren, B, Tian, ZQ (2014) Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds. J Phys Chem Lett 5: pp. 1259-1266 CrossRef
    14. Tian, ZQ, Ren, B, Li, JF, Yang, ZL (2007) Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commun. pp. 3514-3534
    15. Wu, DY, Li, JF, Ren, B, Tian, ZQ (2008) Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem Soc Rev 37: pp. 1025-1041 CrossRef
    16. Gray, SK (2007) Surface plasmon-enhanced spectroscopy and photochemistry. Plasmonics 2: pp. 143-146 CrossRef
    17. Huang, YF, Wu, DY, Zhu, HP, Zhao, LB, Liu, GK, Ren, B, Tian, ZQ (2012) Surface-enhanced Raman spectroscopic study of p-aminothiophenol. Phys Chem Chem Phys 14: pp. 8485-8497 CrossRef
    18. Kreibig, U, Vollmer, M (1995) Optical Properties of Metal Clusters. Springer, Berlin
    19. Ordal, MA, Long, LL, Bell, RJ, Bell, SE, Bell, RR, Alexander, JRW, Ward, CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Optics 22: pp. 1099-1120 CrossRef
    20. Watanabe, K, Menzel, D, Nilius, N, Freund, HJ (2006) Photochemistry on metal nanoparticles. Chem Rev 106: pp. 4301-4320 CrossRef
    21. Chulkov, EV, Borisov, AG, Gauyacq, JP, Sanchez-Portal, D, Silkin, VM, Zhukov, VP, Echenique, PM (2006) Electronic excitations in metals and at metal surfaces. Chem Rev 106: pp. 4160-4206 CrossRef
    22. Kerker, M, Wang, DS, Chew, H (1980) Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. Appl Optics 19: pp. 4159-4174 CrossRef
    23. Pinchuk, A, Kreibig, U (2003) Interface decay channel of particle surface plasmon resonance. New J Phys 5: pp. 151 CrossRef
    24. Xu, HX, Aizpurua, J, Kall, M, Apell, P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62: pp. 4318-4324 CrossRef
    25. Alvarez-Puebla, R, Liz-Marzan, LM, Abajo, FJG (2010) Light concentration at the nanometer scale. J Phys Chem Lett 1: pp. 2428-2434 CrossRef
    26. Ueno, K, Misawa, H (2013) Surface plasmon-enhanced photochemical reactions. J Photochem Photobio C: Photochem Rev 15: pp. 31-52 CrossRef
    27. Zhukovsky, SV, Babicheva, VE, Uskov, AV, Protsenko, IE, Lavrinenko, AV (2014) Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells. Plasmonics 9: pp. 283-289 CrossRef
    28. Govorov, AO, Zhang, H, Demir, HV, Gun鈥檏o, YK (2014) Photogeneration of hot plasmonic electrons wit metal nanocrystals: quantum description and potential applications. Nano Today 9: pp. 85-101 CrossRef
    29. Diesing, D, Kritzler, G, Stermann, M, Nolting, D, Otto, A (2003) Metal/insulator/metal junctions for electrochemical surface science. J Solid State Electrochem 7: pp. 389-415 CrossRef
    30. Schuck, PJ (2013) Hot electrons go through the barrier. Nature Nanotech 8: pp. 799-800 CrossRef
    31. Zhao, LB, Huang, YF, Liu, XM, Anema, JR, Wu, DY, Ren, B, Tian, ZQ (2012) A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline. Phys Chem Chem Phys 14: pp. 12919-12929 CrossRef
    32. Wu, DY, Liu, XM, Huang, YF, Ren, B, Xu, X, Tian, ZQ (2009) Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal SERS enhancement: a DFT study. J Phys Chem C 113: pp. 18212-18222 CrossRef
    33. Hill, W, Wehling, B (1993) Potential-dependent and pH-dependent surface-enhanced Raman-scattering of p-mercaptoaniline on silver and gold substrates. J Phys Chem 97: pp. 9451-9455 CrossRef
    34. Osawa, M, Matsuda, N, Yoshii, K, Uchida, I (1994) Charge-transfer resonance process in surface-enhanced Raman-scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J Phys Chem 98: pp. 12702-12707 CrossRef
    35. Fromm, DP, Sundaramurthy, A, Kinkhabwala, A, Schuck, PJ, Kino, GS, Moerner, WE (2006) Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J Chem Phys 124: pp. 61101 CrossRef
    36. Zhou, Q, Li, XW, Fan, Q, Zhang, XX, Zheng, JW (2006) Charge transfer between metal nanoparticles interconnected with a functionalized molecule probed by surface-enhanced Raman spectroscopy. Angew Chem Int Ed 45: pp. 3970-3973 CrossRef
    37. Fleischmann, M, Hendra, PJ, McQuillan, AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26: pp. 163-166 CrossRef
    38. Jeanmaire, DL, Duyne, RP (1977) Surface Raman spectroelectro-chemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84: pp. 1-20 CrossRef
    39. Albrecht, MGC, Alan, J (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99: pp. 5215-5217 CrossRef
    40. Gao, P, Gosztola, D, Weaver, MJ (1988) Surface-enhanced Raman-spectroscopy as a probe of electroorganic reaction pathways. 1. Processes involving adsorbed nitrobenzene, azobenzene, and related species. J Phys Chem 92: pp. 7122-7130 CrossRef
    41. Funtikov, AM, Sigalaev, SK, Kazarinov, VE (1987) Surface enhanced Raman scattering and local photoemission currents on the freshly prepared surface of a silver electrode. J Electroanal Chem 228: pp. 197-218 CrossRef
    42. Gao, P, Weaver, MJ (1987) Surface-enhanced Raman-spectroscopy as a vibrational probe of electrochemical reaction-mechanisms: the electroreduction of nitrobenzene. J Electrochem Soc 134: pp. C132-C132 CrossRef
    43. Sun, S, Birke, RL, Lombardi, JR (1988) Photolysis of p-nitrobenzoic acid on roughened silver surfaces. J Phys Chem 92: pp. 5965-5972 CrossRef
    44. Shi, C, Zhang, W, Birke, RL, Gosser, JDK, Lombardi, JR (1991) Time-resolved SERS, cyclic voltammetry, and digital simulation of the electroreduction of p-nitrobenzoic acid. J Phys Chem 95: pp. 6276-6285 CrossRef
    45. Park, H, Lee, SB, Kim, K, Kim, MS (1990) Surface-enhanced Raman scattering of p-aminobenzoic acid at Ag electrode. J Phys Chem 94: pp. 7576-7580 CrossRef
    46. Matsuda, N, Yoshii, K, Ataka, K, Osawa, M, Matsue, T, Uchida, I (1992) Surface-enhanced infrared and Raman studies of electrochemical reduction of self-assembled monolayers formed from paranitrohiophenol at silver. Chem Lett. pp. 1385-1388
    47. Kim, K, Kim, KL, Lee, HB, Shin, KS (2012) Similarity and dissimilarity in surface-enhanced Raman scattering of 4-Aminobenzenethiol, 4,4鈥?dimercaptoazobenzene, and 4,4鈥?dimercaptohydrazobenzene on Ag. J Phys Chem C 116: pp. 11635-11642 CrossRef
    48. Kim, K, Lee, HB, Shin, D, Ryoo, H, Lee, JW, Shin, KS (2011) Surface-enhanced Raman scattering of 4-aminobenzenethiol on silver: confirmation of the origin of b 2-type bands. J Raman Spectrosc 42: pp. 2112-2118 CrossRef
    49. Shin, KS, Cho, YK, Kim, K (2014) Surface-enhanced Raman scattering characteristics of 4-nitrobenzenethiol adsorbed on palladium and silver thin films. Vib Spectrosc 70: pp. 120-124 CrossRef
    50. Zhao, LB, Huang, R, Bai, MX, Wu, DY, Tian, ZQ (2011) Effect of aromatic amine-metal interaction on surface vibrational Raman spectroscopy of adsorbed molecules investigated by density functional theory. J Phys Chem C 115: pp. 4174-4183 CrossRef
    51. Zhao, LB, Huang, R, Huang, YF, Wu, DY, Ren, B, Tian, ZQ (2011) Photon-driven charge transfer and Herzberg-Teller vibronic coupling mechanism in surface-enhanced Raman scattering of p-aminothiophenol adsorbed on coinage metal surfaces: a density functional theory study. J Chem Phys 135: pp. 134707 CrossRef
    52. Wu, DY, Zhao, LB, Liu, XM, Huang, R, Huang, YF, Ren, B, Tian, ZQ (2011) Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS. Chem Commun 47: pp. 2520-2522 CrossRef
    53. Gibson, JW, Johnson, BR (2006) Density-matrix calculation of surface-enhanced Raman scattering for p-mercaptoaniline on silver nanoshells. J Chem Phys 124: pp. 064701 CrossRef
    54. Sun, MT, Xu, HX (2009) Direct visualization of the chemical mechanism in SERRS of 4-aminothiophenol/metal complexes and metal/4-aminothiophenol/metal junctions. ChemPhysChem 10: pp. 392-399 CrossRef
    55. Lombardi, JR, Birke, RL, Lu, T, Xu, J (1986) Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. J Chem Phys 84: pp. 4174-4180 CrossRef
    56. Albrecht, AC (1961) On the theory of Raman intensities. J Chem Phys 34: pp. 1476-1484 CrossRef
    57. Kambhampati, P, Child, CM, Foster, MC, Campion, A (1998) On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. J Chem Phys 108: pp. 5013-5026 CrossRef
    58. Hayes, WA, Shannon, C (1996) Electrochemistry of surface-confined mixed monolayers of 4-aminothiophenol and thiophenol on Au. Langmuir 12: pp. 3688-3694 CrossRef
    59. Raj, CR, Kitamura, F, Ohsaka, T (2001) Electrochemical and in situ FTIR spectroscopic investigation on the electrochemical transformation of 4-aminothiophenol on a gold electrode in neutral solution. Langmuir 17: pp. 7378-7386 CrossRef
    60. Lu, Y, Xue, G (1998) Study of surface catalytic photochemical reaction by using conventional and Fourier transform surface enhanced Raman scattering. Appl Surf Sci 125: pp. 157-162 CrossRef
    61. Patrito, EM, Cometto, FP, Paredes-Olivera, P (2004) Quantum mechanical investigation of thiourea adsorption on Ag(111) considering electric field and solvent effects. J Phys Chem B 108: pp. 15755-15769 CrossRef
    62. Yang, XM, Tryk, DA, Ajito, K, Hashimoto, K, Fujishima, A (1996) Surface-enhanced Raman scattering imaging of photopatterned self-assembled monolayers. Langmuir 12: pp. 5525-5527 CrossRef
    63. Yang, XM, Tryk, DA, Hashimoto, K, Fujishima, A (1998) Surface-enhanced Raman imaging (SERI) as a technique for imaging molecular monolayers with chemical selectivity under ambient conditions. J Raman Spectrosc 29: pp. 725-732 CrossRef
    64. Yang, XM, Tryk, DA, Hashimoto, K, Fujishima, A (1998) Examination of the photoreaction of p-nitrobenzoic acid on electrochemically roughened silver using surface-enhanced Raman imaging (SERI). J Phys Chem B 102: pp. 4933-4943 CrossRef
    65. Huang, YF, Zhu, HP, Liu, GK, Wu, DY, Ren, B, Tian, ZQ (2010) When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J Am Chem Soc 132: pp. 9244-9246 CrossRef
    66. Fang, Y, Li, Y, Xu, H, Sun, M (2010) Ascertaining p,p鈥?dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir 26: pp. 7737-7746 CrossRef
    67. Huang, Y, Fang, Y, Yang, Z, Sun, M (2010) Can p,p鈥?dimercapto-azobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle-molecule-Ag (or Au) film?. J Phys Chem C 114: pp. 18263-18269 CrossRef
    68. Tsuji, T, Takashima, H, Takeuchi, H, Egawa, T, Konaka, S (2001) Molecular structure and torsional potential of trans-azobenzene. A gas electron diffraction study. J Phys Chem A 105: pp. 9347-9353 CrossRef
    69. Briquet, L, Vercauteren, DP, Perpete, EA, Jacquemin, D (2006) Is solvated trans-azobenzene twisted or planar?. Chem Phys Lett 417: pp. 190-195 CrossRef
    70. Duan, S, Ai, YJ, Hu, W, Luo, Y (2014) Roles of plasmonic excitation and protonation on photoreactions of p-aminobenzenethiol on Ag nanoparticles. J Phys Chem C 118: pp. 6893-6902 CrossRef
    71. Kim, K, Kim, KL, Shin, KS (2013) Photoreduction of 4,4鈥?dimercap-toazobenzene on Ag revealed by Raman scattering spectroscopy. Langmuir 29: pp. 183-190 CrossRef
    72. Kim, K, Choi, JY, Shin, KS (2014) Surface-enhanced Raman scattering of 4-nitrobenzenethiol and 4-aminobenzenethiol on silver in icy environments at liquid nitrogen temperature. J Phys Chem C 118: pp. 11397-11403 CrossRef
    73. Huang, YF, Zhang, M, Zhao, LB, Feng, JM, Wu, DY, Ren, B, Tian, ZQ (2014) Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew Chem Int Ed 53: pp. 2353-2357 CrossRef
    74. Lund, H Cathodic reduction of nitro and related compounds. In: Lund, H, Hammerich, O eds. (2001) Organic Electrochemistry. Marcel Dekker, Inc., New York, pp. 379-409
    75. Grirrane, A, Corma, A, Garcia, H (2008) Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 322: pp. 1661-1664 CrossRef
    76. Zhu, H, Ke, X, Yang, X, Sarina, S, Liu, H (2010) Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew Chem Int Ed 49: pp. 9657-9661 CrossRef
    77. Kang, L, Xu, P, Zhang, B, Tsai, H, Han, X, Wang, HL (2013) Laser wavelength- and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy. Chem Commun 49: pp. 3389-3391 CrossRef
    78. Kim, HJ, Yoon, JH, Yoon, S (2010) Photooxidative coupling of thiophenol derivatives to disulfides. J Phys Chem A 114: pp. 12010-12015 CrossRef
    79. Sun, M, Xu, H (2012) A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 8: pp. 2777-2786 CrossRef
    80. Campion, A, Kambhampati, P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27: pp. 241-250 CrossRef
    81. Goldmann, A, Matzdorf, R, Theilmann, F (1998) Experimental hot-electron and photohole lifetimes at metal surfaces: what do we know?. Surf Sci 414: pp. L932-L937 CrossRef
    82. Zhukov, VP, Aryaseitiawan, F, Chulkov, EV, Gurtubay, IG, Echenique, PM (2001) Corrected local-density approximation band structures, linear-response dielectric functions, and quasiparticle lifetimes in noble metals. Phys Rev B 64: pp. 195122 CrossRef
    83. Knoesel, E, Hotzel, A, Wolf, M (1998) Ultrafast dynamics of hot electrons and holes in copper: excitation, energy relaxation, and transport effects. Phys Rev B 57: pp. 12812-12824 CrossRef
    84. Brus, L (2008) Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Accounts Chem Res 41: pp. 1742-1749 CrossRef
    85. Lindstrom, CD, Zhu, XY (2006) Photoinduced electron transfer at molecule-metal interfaces. Chem Rev 106: pp. 4281-4300 CrossRef
    86. Huang, YZ, Dong, B (2012) pH dependent plasmon-driven surface-catalysis reactions of p,p鈥?dimercaptoazobenzene produced from para-amino-thiophenol and 4-nitrobenzenethiol. Sci China Chem 55: pp. 2567-2572 CrossRef
    87. Pang, R, Yu, LJ, Wu, DY, Mao, BW, Tian, ZQ (2013) Surface electron-hydronium ion-pair bound to silver and gold cathodes: a density functional theoretical study of photocatalytic hydrogen evolution reactions. Electrochim Acta 101: pp. 272-278 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
Nanoscale noble metals can exhibit excellent photochemical and photophysical properties, due to surface plasmon resonance (SPR) from specifically collective electronic excitations on these metal surfaces. The SPR effect triggers many new surface processes, including radiation and radiationless relaxations. As for the radiation process, the SPR effect causes the significant focus of light and enormous enhancement of the local surface optical electric field, as observed in surface-enhanced Raman spectroscopy (SERS) with very high detection sensitivity (to the single-molecule level). SERS is used to identify surface species and characterize molecular structures and chemical reactions. For the radiationless process, the SPR effect can generate hot carriers, such as hot electrons and hot holes, which can induce and enhance surface chemical reactions. Here, we review our recent work and related literature on surface catalytic-coupling reactions of aromatic amines and aromatic nitro compounds on nanostructured noble metal surfaces. Such reactions are a type of novel surface plasmon-enhanced chemical reaction. They could be simultaneously characterized by SERS when the SERS signals are assigned. By combining the density functional theory (DFT) calculations and SERS experimental spectra, our results indicate the possible pathways of the surface plasmon-enhanced photochemical reactions on nanostructures of noble metals. To construct a stable and sustainable system in the conversion process of the light energy to the chemical energy on nanoscale metal surfaces, it is necessary to simultaneously consider the hot electrons and the hot holes as a whole chemical reaction system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700