Molecular cloning, expression pattern, and phylogenetic analysis of a tetraspanin CD82-like molecule in lamprey Lampetra japonica
详细信息    查看全文
  • 作者:Xiaoping Zhang ; Xueying Song ; Peng Su ; Meng Gou…
  • 关键词:CD82 ; Lampetra japonica ; Expression pattern ; Molecular evolution ; Immune response
  • 刊名:Development Genes and Evolution
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:226
  • 期:2
  • 页码:87-98
  • 全文大小:792 KB
  • 参考文献:Amemiya CT, Saha NR, Zapata A (2007) Evolution and development of immunological structures in the lamprey. Curr Opin Immunol 19(5):535–541CrossRef PubMed PubMedCentral
    Artavanis-Tsakonas K, Kasperkovitz PV, Papa E, Cardenas ML, Khan NS, Van der Veen AG, Ploegh HL, Vyas JM (2011) The tetraspanin CD82 is specifically recruited to fungal and bacterial phagosomes prior to acidification. Infect Immun 79(3):1098–1106CrossRef PubMed PubMedCentral
    Bajoghli B, Guo P, Aghaallaei N, Hirano M, Strohmeier C, McCurley N, Bockman DE, Schorpp M, Cooper MD, Boehm T (2011) A thymus candidate in lampreys. Nature 470(7332):90–94CrossRef PubMed
    Bassani S, Cingolani LA (2012) Tetraspains: interactions and interplay with integrins. Int J Biochem Cell Biol 44:703–708CrossRef PubMed
    Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic 8(2):89–96CrossRef PubMed
    Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58(9):1189–1205CrossRef PubMed
    Charrin S, Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420:133–154CrossRef PubMed
    Charrin S, Jouannet S, Boucheix C, Rubinstein E (2014) Tetraspanins at a glance. J Cell Sci 127(Pt 17):3641–3648CrossRef PubMed
    Cooper MD, Alder MN (2006) The evolution of adaptive immune systems. Cell 124(4):815–822CrossRef PubMed
    DeSalle R, Mares R, Garcia-España A (2010) Evolution of cysteine patterns in the large extracellular loop of tetraspanins from animals, fungi, plants and single-celled eukaryotes. Mol Phylogenet Evol 56(1):486–491CrossRef PubMed
    Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC (1995) KAI 1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268(5212):884–886CrossRef PubMed
    Escola JM, Kleijmeer MJ, Stoorvogel W (1998) Selective enrichment of tetraspan proteins on the internal vesicals of muitivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273(32):20121–20127CrossRef PubMed
    Garcia-España A, Chung PJ, Sarkar IN, Stiner E, Sun TT, Desalle R (2008) Appearance of new tetraspanin genes during vertebrate evolution. Genomics 91(4):326–334CrossRef PubMed
    Guo P, Hirano M, Herrin BR, Li J, Yu C, Sadlonova A, Cooper MD (2009) Dual nature of the adaptive immune system in lampreys. Nature 459(7248):796–801CrossRef PubMed PubMedCentral
    Hemler ME (2008) Targeting of tetraspanin proteins-potential benefits and strategies. Nat Rev Drug Discov 7(9):747–758CrossRef PubMed PubMedCentral
    Huang S, Yuan S, Dong M, Su J, Yu C, Shen Y, Xie X, Yu Y, Yu X, Chen S, Zhang S, Pontarotti P, Xu A (2005) The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. Genomics 86(6):674–684CrossRef PubMed
    Kropshofer H, Spindeldreher S, Röhn TA, Platania N, Grygar C, Daniel N, Wölpl A, Langen H, Horejsi V, Vogt AB (2001) Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes. Nat Immunol 3(1):61–68CrossRef PubMed
    Lebel-Binay S, Gil ML, Lagaudriere C, Miloux B, Marchiol-Fournigault C, Quillet-Mary A, Lopez M, Fradelizi D, Conjeaud H (1994) Further characterization of CD82/IA4 antigen (type III surface protein): An activation/differentiation marker of monoclear cells. Cell Immunol 154:468–483CrossRef PubMed
    Lebel-Binay S, Laguadriere C, Fradelizi D, Conjeaud H (1995) CD82, member of the tetra-span-transmembrane protein family, is a costimulatory protein for T cell activation. J Immunol 155:101–110PubMed
    Levy S, Shoham T (2005) The tetraspanin web modulates inmmune-signalling complexes. Nat Rev Immunol 5:136–148CrossRef PubMed
    Liu C, Liu X, Wu Y et al (2008) Separation and cytological character of peripheral blood lymphocytes in Japanese lamprey. Chin J Zool 43(1):82–87
    Miranti CK (2009) Controlling cell surface dynamics and signaling: how CD82/KAI1 suppresses metastasis? Cell Signal 21:196–211CrossRef PubMed
    Odintsova E, Sugiure T, Berdichevski F (2000) Attenuation of EGF receptor signaling by a metastasis supressor, the tetraspanin CD82/KAI-1. Curr Biol 10:1009–1012CrossRef PubMed
    Pancer Z, Cooper MD (2006) The evolution of adaptive immunity. Annu Rev Immunol 24:497–518CrossRef PubMed
    Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL, Cooper MD (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430(6996):174–180CrossRef PubMed
    Pancer Z, Saha NR, Kasamatsu J, Suzuki T, Amemiya CT, Kasahara M, Cooper MD (2005) Variable lymphocyte receptors in hagfish. Proc Natl Acad Sci 102(26):9224–9229CrossRef PubMed PubMedCentral
    Saleh SM, Parhar RS, Al-Hejailan RS, Bakheet RH, Khaleel HS, Khalak HG, Halees AS, Zaidi MZ, Meyer BF, Yung GP, Seebach JD, Conca W, Khabar KS, Collison KS, Al-Mohanna FA (2013) Identification of the tetraspanin CD82 as a new barrier to xenotransplantation. J Immunol 193:2796–2805CrossRef
    Schwartz-Albiez R, Dörken B, Hofmann W, Moldenhauer G (1988) The B cell-associated CD37 antigen (gp40-52). Structure and subcellular expression of an extensively glycosylated glycoprotein. J Immunol 140(3):905–914PubMed
    Seigneuret M, Delaguillaumie A, Lagaudriere-Gesbert C, Conjeaud H (2001) Structure of the tetraspain main extracellular domain: a partially conserved fold with a structurally variable domain insertion. J Biol Chem 276(43):40055–40064CrossRef PubMed
    Shibagaki N, Hanada K, Yamaguchi S, Yamashita H, Shimada S, Hamada H (1998) Functional analysis of CD82 in the early phase of T cell activation: roles in cell adhesion and signal transduction. Eur J Immunol 28:1125–1133CrossRef PubMed
    Shibagaki N, Hanada K, Yamashita H, Shimada S, Hamada H (1999) Overexpression of CD82 on human T cells enhances LFA-1/ICAM-1-mediated cell-cell adhesion: functional association between CD82 and LFA-1 in T cell activation. Eur J Immunol 29:4081–4091CrossRef PubMed
    Sridhar SC, Miranti CK (2006) Tetraspanin KAI1/CD82 suppresses invasion by inhubiting integrin-dependent crosstalk with c-Met receptor and Src kinases. Oncogene 25:2367–2378CrossRef PubMed
    Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28(2):106–112CrossRef PubMed
    Takahashi M, Sugiure T, Abe M, Lshii K, Shirasuna K (2007) Regulation of c-Met signaling by the tetraspanin KAI-1/CD82 affects cancer cell migration. Int J Cancer 121:1919–1929CrossRef PubMed
    Tarrant JM, Robb L, Spriel AB, Wright MD (2003) Tetraspanins: molecular organisers of the leukocyto surface. Trends Immunol 24:610–617CrossRef PubMed
    Termini CM, Cotter ML, Marjon KD, Buranda T, Lidke A, Gillette JM (2014) The membrane scaffold CD82 regulates cell adhesion by altering α4 integrin stability and molecular density. Mol Biol Cell 25:1560–1573CrossRef PubMed PubMedCentral
    Van den Ent F, Lowe J (2006) RF: cloning: a restriction-free method for inserting target gengs into plasmid. J Biochem Biophys Methods 67(1):67–74CrossRef PubMed
    Xu C, Zhang YH, Thangavel M, Richardson MM, Liu L, Zhou B, Zheng Y, Ostrom RS, Zhang XA (2009) CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. FASEB J 23:3273–3288CrossRef PubMed PubMedCentral
    Yien CT, Weissman AM (2011) Dissecting the diverse functions of the metastasis suppressor CD82/KAI1. FEBS Lett 585(20):3166–3173CrossRef
  • 作者单位:Xiaoping Zhang (1) (2)
    Xueying Song (1) (2)
    Peng Su (1) (2)
    Meng Gou (1) (2)
    Hao Wang (1) (2)
    Xin Liu (1) (2)
    Qingwei Li (1) (2)

    1. College of Life Science, Liaoning Normal University, Dalian, 116029, China
    2. Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Developmental Biology
    Neurosciences
    Cell Biology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-041X
文摘
CD82, a member of the tetraspanins, is originally identified as an accessory molecule in T cell activation, and it participates in the formation of immune synapse both in T cells and antigen-presenting cells of jawed vertebrates. In the present study, a CD82 homologous complementary DNA (cDNA) sequence is identified in the lamprey Lampetra japonica. The open reading frame of this sequence is 801 bp long and encodes a 266-amino acid protein. The multialignment of this sequence with several typical CD82s and CD37s of jawed vertebrates shows that it also possesses their conserved four transmembrane domains and a six-cysteine motif Cys-Cys-Gly…Cys-Ser-Cys…Cys…Cys, which is a characteristic motif of CD82 and CD37 vertebrate tetraspanin sequences. Since it is close to CD82s in sequence similarity, we name it as Lja-CD82-like. From the distribution profile of the conserved motifs of CD82-like, CD82, and CD37 molecules from molluscas to mammals, it seems that the CD82s and CD37s evolved from a common ancestral gene through a gene duplication event to their modern forms by a short insertion or substitution approaches. The phylogenetic analysis indicated that CD82 and CD37 molecules of jawed vertebrates originated from a common ancestral gene which is close to agnathan CD82-like and evolved into two distinct paralogous groups maybe after the divergence of jawed and jawless vertebrates. An expression vector with trigger factor (TF) was constructed to ensure that Lja-CD82-like express in prokaryotic expression host. The expressions of Lja-CD82-like messenger RNA (mRNA) and protein in immune-related tissues of lamprey were detected by real-time quantitative polymerase chain reaction and western blotting. Results showed that the mRNA and the protein levels of Lja-CD82-like were significantly upregulated in lymphocyte-like cells, gills, and supraneural myeloid bodies after stimulation with mixed antigens, respectively. Our data provided a foundation for the further study of Lja-CD82-like and its role in immune response process of jawless vertebrates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700