Mechanisms for stronger warming over drier ecoregions observed since 1979
详细信息    查看全文
文摘
Previous research found that the warming rate observed for the period 1979–2012 increases dramatically with decreasing vegetation greenness over land between 50°S and 50°N, with the strongest warming rate seen over the driest regions such as the Sahara desert and the Arabian Peninsula, suggesting warming amplification over deserts. To further this finding, this paper explores possible mechanisms for this amplification by analyzing observations, reanalysis data and historical simulations of global coupled atmosphere–ocean general circulation models. We examine various variables, related to surface radiative forcing, land surface properties, and surface energy and radiation budget, that control the warming patterns in terms of large-scale ecoregions. Our results indicate that desert amplification is likely attributable primarily to enhanced longwave radiative forcing associated with a stronger water vapor feedback over drier ecoregions in response to the positive global-scale greenhouse gas forcing. This warming amplification and associated downward longwave radiation at the surface are reproduced by historical simulations with anthropogenic and natural forcings, but are absent if only natural forcings are considered, pointing to new potential fingerprints of anthropogenic warming. These results suggest a fundamental pattern of global warming over land that depend on the dryness of ecosystems in mid- and low- latitudes, likely reflecting primarily the first order large-scale thermodynamic component of global warming linked to changes in the water and energy cycles over different ecosystems. This finding may have important implications in interpreting global warming patterns and assessing climate change impacts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700