Corn stalk-derived activated carbon with a stacking sheet-like structure as sulfur cathode supporter for lithium/sulfur batteries
详细信息    查看全文
  • 作者:Guanghui Yuan ; Fuxing Yin ; Yan Zhao ; Zhumabay Bakenov ; Gongkai Wang…
  • 关键词:Corn stalk ; Sulfur cathode ; Sulfur/stacking sheet ; like carbon composite ; Lithium/sulfur battery
  • 刊名:Ionics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:22
  • 期:1
  • 页码:63-69
  • 全文大小:1,073 KB
  • 参考文献:1.Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRef
    2.Zhao Y, Zhang Y, Gosselink D, Doan TNL, Sadhu M, Cheang HJ, Chen P (2012) Polymer electrolytes for lithium/sulfur batteries. Membranes 2:553–564CrossRef
    3.Zhang Y, Zhao Y, Sun KEK, Chen P (2011) Development in lithium/sulfur secondary batteries. Open Mater Sci J 5:215–221CrossRef
    4.Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8:3948–3952CrossRef
    5.Zhang Y, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Sun KEK, Yermukhambetova A, Chen P (2013) Effect of nanosized Mg0.6Ni0.4O prepared by self-propagating high temperature synthesis on sulfur cathode performance in Li/S batteries. Powder Technol 235:248–255CrossRef
    6.Evers S, Nazar LF (2013) New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res 46:1135–1143CrossRef
    7.Zhang Y, Zhao Y, Konarov A, Gosselink D, Soboleski HG, Chen P (2013) A novel sulfur/polypyrrole/multi-walled carbon nanotube nanocomposite cathode with core-shell tubular structure for lithium rechargeable batteries. Solid State Ionics 238:30–35CrossRef
    8.Zhang Y, Zhao Y, Konarov A, Gosselink D, Li Z, Chen P (2013) One pot approach to synthesize PPy@S core-shell nanocomposite cathode for Li/S batteries. J Nanoparticle Res 15:2007CrossRef
    9.Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew Chem Int Ed 51:3591–3595CrossRef
    10.Zhao Y, Zhang Y, Bakenov Z, Chen P (2013) Electrochemical performance of lithium gel polymer battery with nanostructured sulfur/carbon composite cathode. Solid State Ionics 234:40–45CrossRef
    11.Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3:1531–1537CrossRef
    12.Zhang Y, Bakenov Z, Zhao Y, Konarov A, Wang Q, Chen P (2014) Three-dimensional carbon fiber as current collector for lithium/sulfur batteries. Ionics 20:803–808CrossRef
    13.Yuan GH, Xiang JM (2013) Facile synthesis of a sulfur/multiwalled carbon nanotube nanocomposite cathode with core-shell structure for lithium rechargeable batteries. Ionics 19:1449–1453CrossRef
    14.Chen SQ, Huang XD, Liu H, Sun B, Yeoh WK, Li KF, Zhang JQ, Wang GX (2014) 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries. Adv Energy Mater 4:1301761
    15.Zhang Y, Zhao Y, Bakenov Z, Tuiyebayeva M, Konarov A, Chen P (2014) Synthesis of hierarchical porous sulfur/polypyrrole/multiwalled carbon nanotube composite cathode for lithium batteries. Electrochim Acta 143:49–55CrossRef
    16.Li J, Li K, Li MQ, Gosselink D, Zhang Y, Chen P (2014) A sulfur-polyacrylonitrile/graphene composite cathode for lithium batteries with excellent cyclability. J Power Sources 252:107–112CrossRef
    17.Zhang Z, Zhao Y, Bakenov Z, Babaa MR, Konarov A, Ding C, Chen P (2013) Effect of graphene on sulfur/polyacrylonitrile nanocomposite cathode in high performance lithium/sulfur batteries. J Electrochem Soc 160:A1194–A1198CrossRef
    18.Zhang Y, Zhao Y, Konarov A, Li Z, Chen P (2015) Effect of mesoporous carbon microtube prepared by carbonizing the poplar catkin on sulfur cathode performance in Li/S batteries. J Alloys Compd 619:298–302CrossRef
    19.Ma YW, Zhao J, Zhang LR, Zhao Y, Fan QL, Li XA, Hu Z, Huang W (2011) The production of carbon microtubes by the carbonization of catkins and their use in the oxygen reduction reaction. Carbon 49:5292–5297CrossRef
    20.Li Y, Xu L, Chen T, Liu X, Xu Z, Zhang H (2012) Carbon nanoparticles from corn stalk soot and its novel application as stationary phase of hydrophilic interaction chromatography and per aqueous liquid chromatography. Anal Chim Acta 726:102–108CrossRef
    21.Endo M, Takeuchi K, Hiroka T, Furuta T, Kasai T, Sun X, Kiang CH, Dresselhaus MS (1997) Stacking nature of graphene layers in carbon nanotubes and nanofibres. J Phys Chem Solids 58:1707–1713CrossRef
    22.Zhang Y, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Malik M, Paron T, Chen P (2012) One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries. J Power Sources 208:1–8CrossRef
    23.Guo JC, Xu YH, Wang CS (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett 11:4288–4294CrossRef
    24.Zhang Y, Zhao Y, Konarov A, Gosselink D, Soboleski HG, Chen P (2013) A novel nano-sulfur/polypyrrole/graphene nanocomposite cathode with a dual-layered structure for lithium rechargeable batteries. J Power Sources 241:517–521CrossRef
    25.Zhang Y, Zhao Y, Bakenov Z (2014) A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte. Nanoscale Res Lett 9:137CrossRef
    26.Zhang Y, Zhao Y, Bakenov Z (2014) A simple approach to synthesize nanosized sulfur/graphene oxide materials for high-performance lithium/sulfur batteries. Ionics 20:1047–1050CrossRef
    27.Li X, Lushington A, Liu J, Li R, Sun X (2014) Superior stable sulfur cathodes of Li-S batteries enabled by molecular layer deposition. Chem Commun 50:9757–9760CrossRef
    28.Ding B, Yuan C, Shen L, Xu G, Nie P, Zhang X (2013) Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries. Chem Eur J 19:1013–1019CrossRef
    29.Li G, Li G, Ye S, Gao X (2012) A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv Energy Mater 2:1238–1245CrossRef
    30.Kim J, Lee DJ, Jung HG, Sun YK, Hassoun J, Scrosati B (2013) An advanced lithium-sulfur battery. Adv Funct Mater 23:1076–1080CrossRef
  • 作者单位:Guanghui Yuan (1)
    Fuxing Yin (2) (3)
    Yan Zhao (2) (3)
    Zhumabay Bakenov (4)
    Gongkai Wang (2) (3)
    Yongguang Zhang (2) (3)

    1. Department of Chemistry and Chemical Engineering, Ankang University, Shaanxi, Ankang, 725000, China
    2. Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin, 300130, China
    3. Tianjin Key Laboratory of Laminating Fabrication and Interface Control Technology for Advanced Materials, Hebei University of Technology, Tianjin, 300130, China
    4. Institute of Batteries LLC, Nazarbayev University Research and Innovation System, 53, Kabanbay Batyr Avenue, Astana, 010000, Kazakhstan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
A novel stacking sheet-like carbon (SSC) has been synthesized by carbonizing the corn stalks and composited with sulfur to prepare a cathode for lithium/sulfur batteries. Scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting SSC with uniform sulfur coating on its surface. The SSC nanoflakes in the composite act as nanocurrent collectors, favoring the charge carrier ion transport and electrolyte diffusion. The interlaced SSC nanoflakes irregularly stack together and form a three-dimensional network, which is beneficial for both trapping soluble polysulfide intermediates and rendering the electrical conductivity of the composite electrode. A lithium cell employing this sulfur/stacking sheet-like carbon (S/SSC) composite cathode delivered an initial discharge capacity of 965 mAh g−1 at 0.2 C and retained a capacity of 743 mAh g−1 over 100 charge-discharge cycles. Even at 3.2 C rate, the lithium cell with the S/SSC composite cathode demonstrated an excellent rate capability, delivering a highly reversible discharge capacity of 418 mAh g−1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700