Thermal decomposition of inclusion compounds on the base of the metal–organic framework [Zn4(DMF)(ur)2(ndc)4]
详细信息    查看全文
  • 作者:Vladimir A. Logvinenko ; Sergey A. Sapchenko…
  • 关键词:Coordination compounds ; Inclusion compounds ; Kinetic stability ; Metal–organic frameworks ; Non ; isothermal kinetics
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:123
  • 期:1
  • 页码:697-702
  • 全文大小:586 KB
  • 参考文献:1.Fromm KM. Coordination polymer networks with s-block metal ions. Coord Chem Rev. 2008;252:856–85.CrossRef
    2.Kirillov AM. Hexamethylenetetramine: an old new building block for design of coordination polymers. Coord Chem Rev. 2011;255:1603–22.CrossRef
    3.Mani-Biswas M, Tahir Cagin T. Insights from theoretical calculations on structure, dynamics, phase behavior and hydrogen sorption in nanoporous metal organic frameworks. Comput Theor Chem. 2012;987:42–56.CrossRef
    4.Lyszczek R, Iwan M. Investigation of desolvation process in lanthanide dinicotinates. J Therm Anal Calorim. 2011;103:633–9.CrossRef
    5.Jiang C-H, Song L-F, Jiao C-L, Zhang J, Sun L-X, Xu F, Du Y, Cao Z. Exceptional thermal stability and thermodynamic properties of lithium based metal–organic framework. J Therm Anal Calorim. 2011;103:373–80.CrossRef
    6.Zhou Y-X, Sun L-X, Cao Z, Zhang J, Xu F, Song L-F, Zhao Z-M, Zou Y-J. Heat capacities and thermodynamic properties of M(HBTC)(4,4′-bipy)·3DMF (M=Ni and Co). J Therm Anal Calorim. 2012;110:949–54.CrossRef
    7.Dybtsev DN, Yutkin MP, Peresypkina EV, Virovets AV, Serre C, Ferey G, Fedin VP. Isoreticular homochiral porous metal–organic structures with tunable pore sizes. Inorg Chem. 2007;46:6843–5.CrossRef
    8.Dybtsev DN, Yutkin MP, Samsonenko DG, Fedin VP, Nuzhdin AL, Bezrukov AA, Bryliakov KP, Talsi EP, Belosludov RV, Mizuseki H, Kawazoe Y, Subbotin OS, Belosludov VR. Modular homochiral porous coordination polymers: rational design, enantioselective guest exchange sorption and ab initio calculations of host–guest interactions. Chem Eur J. 2010;10:348–56.
    9.Jiang X, Jiao C-L, Sun Y-L, Li Z-B, Liu S, Zhang J, Wang Z-O, Sun L-X, Xu F, Zhou H, Sawada Y. Heat capacities and thermodynamic of Co(3,5-PDC)(H2O). J Therm Anal Calorim. 2013;112:1579–85.CrossRef
    10.Deb N. An investigation on solid-state pyrolytic decomposition of barium trihemiaquatris(oxalato)lanthanate(III)decahydrate using TG–DTA in air and DSC in nitrogen. J Therm Anal Calorim. 2013;112:1415–21.CrossRef
    11.Yang Q, Xie G, Chen S, Gao S. Synthesis, structure and thermodynamics of supermolecular compound [Ni3(Hdatrz)6(sca)2(H2O)4]sca·11H2O (Hdatrz = 3,5-diamino-1,2,4-triazole, H2sca = succinic acid). J Therm Anal Calorim. 2012;110:979–84.CrossRef
    12.Logvinenko VA, Yutkin MP, Zavakhina MS, Fedin VP. Porous metal–organic frameworks (MOFs) as matrices for inclusion compounds: kinetic stability under heating. J Therm Anal Calorim. 2012;109:555–60.CrossRef
    13.Sapchenko SA, Samsonenko DG, Dybtsev DN, Melgunov MS, Fedin VP. Microporous sensor: gas sorption, guest exchange and guest-dependent luminescence of metal–organic framework. Dalton Trans. 2011;40:2196–203.CrossRef
    14.Netzsch Thermokinetics. http://​www.​netzsch-thermal-analysis.​com/​us/​products-solutions/​advanced-software/​thermokinetics.​html .
    15.Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14.CrossRef
    16.Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRef
    17.Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci. 1963;6:183–95.
    18.Ozawa T. Estimation of activation energy by isoconversion methods, Thermochim Acta. 1992;203:159–65.
    19.Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:478–523.
    20.Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa–Flynn–Wall analysis. Thermochim Acta. 1992;203:167–75.CrossRef
    21.Opferman JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermo-analytical data-advantages and limitations. Thermochim Acta. 2001;391:119–27.CrossRef
    22.Vyazovkin S. Model-free kinetics: staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.CrossRef
    23.Simon P. Single-step kinetics approximation employing non-Arrhenius temperature functions. J Therm Anal Calorim. 2005;79:703–8.CrossRef
    24.Simon P. The single-step approximation: attributes, strong and weak sides. J Therm Anal Calorim. 2007;88:709–15.CrossRef
    25.Simon P, Thomas P, Dubaj T, Cibulkova Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115:853–9.CrossRef
    26.Sestak J. Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics? J Therm Anal Calorim. 2014;117:3–7.CrossRef
    27.Vyazovkin S, Burnham AK, Criado JM, Luis A, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRef
    28.Vyazovkin S, Chrissafis K, Di Lorenzo M-R, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol J-J. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRef
    29.Logvinenko V. Stability and reactivity of coordination and inclusion compounds in the reversible processes of thermal dissociation. Thermochim Acta. 1999;340:293–9.CrossRef
    30.Logvinenko V. Solid state coordination chemistry. The quantitative thermoanalytical study of thermal dissociation reactions. J Therm Anal Calorim. 2000;60:9–15.CrossRef
    31.Logvinenko V. Stability of supramolecular compounds under heating. Thermodynamic and kinetic aspects. J Therm Anal Calorim. 2010;101:577–83.CrossRef
    32.Logvinenko V, Fedorov V, Mironov Y, Drebushchak V. Kinetic and thermodynamic stability of cluster compounds under heating. J Therm Anal. 2007;88:687–92.CrossRef
    33.Logvinenko V, Drebushchak V, Pinakov D, Chekhova G. Thermodynamic and kinetic stability of inclusion compounds under heating. J Therm Anal. 2007;90:23–30.CrossRef
    34.Pinakov DV, Logvinenko VA, Chekhova GN. The relationship between properties of fluorinated graphite intercalates and matrix composition. Part 7. Intercalates with ethyl acetate. J Therm Anal Calorim. 2014;117:235–41.CrossRef
    35.Logvinenko V, Dybtsev D, Fedin V, Drebushchak V, Yutkin M. The stability of inclusion compounds under heating. Part 2. Inclusion compounds of layered zinc camphorate, linked by linear N-donor ligands. J Therm Anal Calorim. 2010;100:183–9.CrossRef
    36.Logvinenko VA, Sapchenko SA, Fedin VP. Thermal decomposition of inclusion compounds on the base of the metal–organic framework [Zn4(DMF)(ur)2(ndc)4]. Part I. J Therm Anal Calorim. 2014;117:747–53.CrossRef
    37.Serin B, Ellickson RT. Determination of diffusion coefficients. J Chem Phys. 1941;9:742–7.CrossRef
    38.Solomons TWG, Fryhle CB. Organic chemistry. 9th ed. New York: Wiley; 2006.
  • 作者单位:Vladimir A. Logvinenko (1) (2)
    Sergey A. Sapchenko (1) (2)
    Vladimir P. Fedin (1) (2)

    1. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentyev Ave 3, 630090, Novosibirsk-90, Russia
    2. Novosibirsk State University, Pirogova St 2, 630090, Novosibirsk-90, Russia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
Inclusion compounds based on metal–organic frameworks (MOFs) have promising practical applications in gas storage, the separation and fine purification of substances and also in catalysis. These MOFs are crystalline compounds consisting of metal ions coordinated by bridging organic ligands with the formation of porous structures. Here, we study the thermal stability of two inclusion compounds on the base of the new framework: [Zn4(DMF)(ur)2(ndc)4]·5DMF·H2O and [Zn4(DMF)(ur)2(ndc)4]·4ferrocene (ndc2−= 2,6-naphthalenedicarboxylate, ur = hexamethylenetetramine, DMF = N,N′-dimethylformamide, ferrocene = Fe(C5H5)2). The first compound decomposition includes water removal, DMF removal and complex pyrolysis of the empty framework; the kinetics of DMF release is studied. The second compound does not lose the guest molecules before full pyrolysis. The stability of the inclusion compounds with DMF guest molecules on the base of the different host frameworks is considered.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700