Characterization of the binding of flavanone hesperetin with chicken egg lysozyme using spectroscopic techniques: effect of pH on the binding
详细信息    查看全文
  • 作者:Atanu Singha Roy ; Pooja Ghosh
  • 关键词:Lysozyme ; Hesperetin ; Binding constant ; Fluorescence ; Docking
  • 刊名:Journal of Inclusion Phenomena and Macrocyclic Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:84
  • 期:1-2
  • 页码:21-34
  • 全文大小:3,127 KB
  • 参考文献:1.Blake, C.C., Koenig, D.F., Mair, G.A., North, A.C., Phillips, D.C., Sarma, V.R.: Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature 206, 757–761 (1965)CrossRef
    2.Huang, S.L., Maiorov, V., Huang, P.L., Ng, A., Lee, H.C., Chang, Y.T., Kallenbach, N., Huang, P.L., Chen, H.C.: Structural and functional modeling of human lysozyme reveals a unique nonapeptide, HL9, with anti-HIV activity. Biochemistry 44, 4648–4655 (2005)CrossRef
    3.Mine, Y., Ma, F., Lauriau, S.: Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J. Agric. Food Chem. 52, 1088–1094 (2004)CrossRef
    4.Parrot, J.L., Nicot, G.: Antihistaminic action of lysozyme. Nature 197, 496 (1963)CrossRef
    5.Gorbenko, G.P., Ioffe, V.M., Kinnunen, P.K.: Binding of lysozyme to phospholipid bilayers: evidence for protein aggregation upon membrane association. Biophys. J. 93, 140–153 (2007)CrossRef
    6.Redfield, C., Dobson, C.M.: 1H NMR studies of human lysozyme: spectral assignment and comparison with hen lysozyme. Biochemistry 29, 7201–7214 (1990)CrossRef
    7.Imoto, T., Foster, L.S., Ruoley, J.A., Tanaka, F.: Fluorescence of lysozyme: emissions from tryptophan residues 62 and 108 and energy migration. Proc. Natl. Acad. Sci. USA 69, 1151–1155 (1972)CrossRef
    8.Yang, R., Yu, L., Zeng, H., Liang, R., Chen, X., Qu, L.: The interaction of flavonoid-lysozyme and the relationship between molecular structure of flavonoids and their binding activity to lysozyme. J. Fluoresc. 22, 1449–1459 (2012)CrossRef
    9.Wang, G., Wang, L., Tang, W., Hao, X., Wang, Y., Lu, Y.: Binding of quercetin to lysozyme as probed by spectroscopic analysis and molecular simulation. J. Fluoresc. 21, 1879–1886 (2011)CrossRef
    10.Huang, Y., Cui, L., Wang, J., Huo, K., Chen, C., Zhan, W., Dou, Y.: Comparative studies on interactions of baicalein, baicalin and scutellarin with lysozyme. Eur. J. Med. Chem. 46, 6039–6045 (2011)CrossRef
    11.Ghosh, K.S., Sahoo, B.K., Dasgupta, S.: Spectrophotometric studies on the interaction between (-)-epigallocatechin gallate and lysozyme. Chem. Phys. Lett. 452, 193–197 (2008)CrossRef
    12.Liang, M., Liu, R., Su, R., Yu, Y., Wang, L., He, Z.: Interaction between lysozyme and procyanidin: multilevel structural nature and effect of carbohydrates. Food Chem. 138, 1596–1603 (2013)CrossRef
    13.Ding, F., Zhao, G., Huang, J., Sun, Y., Zhang, Y.: Fluorescence spectroscopic investigation of the interaction between chloramphenicol and lysozyme. Eur. J. Med. Chem. 44, 4083–4089 (2009)CrossRef
    14.Mabry, T.J., Markham, K.R., Thomas, M.B.: The systematic identification of flavonoids. Springer-Verlag, NewYork (1970)CrossRef
    15.Harborne, J.B. (ed.): The flavonoids, advances in research since 1986. Chapman & Hall, London (1994)
    16.Rice-Evans, C., Miller, N.J., Paganga, G.: Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20, 933–956 (1996)CrossRef
    17.Mateeva, N., Gangapuram, M., Mazzio, E., Eyunni, S., Soliman, K.F., Redda, K.K.: Biological evaluation of synthetic chalcone and flavone derivatives as anti-inflammatory agents. Med. Chem. Res. 24, 1672–1680 (2015)CrossRef
    18.Yang, Y., Wolfram, J., Shen, H., Fang, X., Ferrari, M.: Hesperetin: an inhibitor of the transforming growth factor-β (TGF-β) signaling pathway. Eur. J. Med. Chem. 58, 390–395 (2012)CrossRef
    19.Kara, S., Gencer, B., Karaca, T., Tufan, H.A., Arikan, S., Ersan, I., Karaboga, I., Hanci, V.: Protective effect of hesperetin and naringenin against apoptosis in ischemia/reperfusion-induced retinal injury in rats. Sci. World J. 2014, 797824 (2014)CrossRef
    20.Deng, W., Jiang, D., Fang, Y., Zhou, H., Cheng, Z., Lin, Y., Zhang, R., Zhang, J., Pu, P., Liu, Y., Bian, Z., Tang, Q.: Hesperetin protects against cardiac remodelling induced by pressure overload in mice. J. Mol. Histol. 44, 575–585 (2013)CrossRef
    21.Singha Roy, A., Tripathy, D.R., Ghosh, A.K., Dasgupta, S.: An alternate mode of binding of the polyphenol quercetin with serum albumins when complexed with Cu(II). J. Lumin. 132, 2943–2951 (2012)CrossRef
    22.Singha Roy, A., Dinda, A.K., Dasgupta, S.: Study of the interaction between fisetin and human serum albumin: a biophysical approach. Protein Pept. Lett. 19, 604–615 (2012)CrossRef
    23.Bourassa, P., Bariyanga, J., Tajmir-Riahi, H.A.: Binding sites of resveratrol, genistein, and curcumin with milk α-and β-caseins. J. Phys. Chem. B 117, 1287–1295 (2013)CrossRef
    24.Zhang, Y., Shi, S., Sun, X., Xiong, X., Peng, M.: The effect of Cu2+ on interaction between flavonoids with different C-ring substituents and bovine serum albumin: structure–affinity relationship aspect. J. Inorg. Biochem. 105, 1529–1537 (2011)CrossRef
    25.Du, S., Xie, Y., Chen, X.: Influence of glucose on the human serum albumin–flavone interaction and their antioxidant activity. Mol. BioSyst. 9, 55–60 (2013)CrossRef
    26.Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T.: How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423 (1995)CrossRef
    27.Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)CrossRef
    28.Lakowicz, J.R.: Principles of fluorescence spectroscopy, 3rd edn. Springer, New York (2006)CrossRef
    29.Hu, Y.J., Liu, Y., Wang, J.B., Xiao, X.H., Qu, S.S.: Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J. Pharm. Biomed. Anal. 36, 915–919 (2004)CrossRef
    30.Förster, T.: Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 2, 55–75 (1948)CrossRef
    31.Li, D., Cao, X., Ji, B.: Spectrophotometric studies on the interaction between myricetin and lysozyme in the absence or presence of Cu2+or Fe3+. J. Lumin. 130, 1893–1900 (2010)CrossRef
    32.Berman, H.M., Westbrook, J., Feng, Z., Gililand, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)CrossRef
    33.Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489 (1996)CrossRef
    34.DeLano, W.L.: The PyMoL molecular graphics system. DeLano Scientific, San Carlos (2004)
    35.Hubbard, S.J., Thornton, J.M.: ‘NACCESS’. Computer Program, Department of Biochemistry and Molecular Biology, University College, London (1993)
    36.Xie, M.X., Xu, Y.Y., Wang, D.: Interaction between hesperetin and human serum albumin revealed by spectroscopic methods. Biochim. Biophys. Acta 1724, 215–224 (2005)CrossRef
    37.Zsila, F., Bikadi, Z., Simonyi, M.: Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods. Biochem. Pharmacol. 65, 447–456 (2003)CrossRef
    38.Singha Roy, A., Ghosh, K.S., Dasgupta, S.: An investigation into the altered binding mode of green tea polyphenols with human serum albumin on complexation with Copper. J. Biomol. Struct. Dyn. 31, 1191–1206 (2013)CrossRef
    39.Kragh-Hansen, U.: Structure and ligand binding properties of human serum albumin. Dan. Med. Bull. 37, 57–84 (1990)
    40.Singha Roy, A., Utreja, J., Badhei, S.: Characterization of the binding of fisetin and morin with chicken egg lysozyme using spectroscopic and molecular docking methods. J. Incl. Phenom. Macro. Chem. 81, 385–394 (2015)CrossRef
    41.Li, D., Zhang, T., Xu, C., Ji, B.: Effect of pH on the interaction of baicalein with lysozyme by spectroscopic approaches. J. Photochem. Photobiol. B 104, 414–424 (2011)CrossRef
    42.He, W., Li, Y., Tang, J., Luan, F., Jin, J., Hu, Z.: Comparison of the characterization on binding of alpinetin and cardamonin to lysozyme by spectroscopic methods. Int. J. Biol. Macromol. 39, 165–173 (2006)CrossRef
    43.Lloyd, J.B.F.: Multicomponent analysis by synchronous luminescence spectrometry. Nature 231, 64–65 (1971)
    44.Miller, J.N.: Recent developments in fluorescence and chemiluminescence analysis. Plenary lecture. Analyst 109, 191–198 (1984)CrossRef
    45.Naveenraj, S., Raj, M.B., Anandan, S.: Binding interaction between serum albumins and perylene-3,4,9,10-tetracarboxylate—a spectroscopic investigation. Dyes Pigm. 94, 330–337 (2012)CrossRef
    46.Singha Roy, A., Pandey, N.K., Dasgupta, S.: Preferential binding of fisetin to the native state of bovine serum albumin: spectroscopic and docking studies. Mol. Biol. Rep. 40, 3239–3253 (2013)CrossRef
    47.Zhang, H.-M., Chen, J., Zhou, Q.-H., Shi, Y.-Q., Wang, Y.-Q.: Study on the interaction between cinnamic acid and lysozyme. J. Mol. Struct. 987, 7–12 (2011)CrossRef
    48.Uversky, V.N., Narizhneva, N.V., Ivanova, T.V., Tomashevski, A.Y., Omashevski, A.Y.: Rigidity of human α-fetoprotein tertiary structure is under ligand control. Biochemistry 494, 13638–13645 (1997)CrossRef
    49.Teng, Y., Ji, F., Li, C., Yu, Z., Liu, R.: Interaction mechanism between 4-aminoantipyrine and the enzyme lysozyme. J. Lum. 131, 2661–2667 (2011)CrossRef
    50.Gonçalves, R., Mateus, N., de Freitas, V.: Biological relevance of the interaction between procyanidins and trypsin: a multitechnique approach. J. Agric. Food Chem. 58, 11924–11931 (2010)CrossRef
  • 作者单位:Atanu Singha Roy (1) (2)
    Pooja Ghosh (1)

    1. Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
    2. Department of Chemistry, National Institute of Technology, Meghalaya, 793003, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Organic Chemistry
    Food Science
    Crystallography
  • 出版者:Springer Netherlands
  • ISSN:1573-1111
文摘
The interaction between hesperetin and hen egg lysozyme has been investigated using UV–vis, steady-state fluorescence, synchronous fluorescence, three dimensional (3D) fluorescence, circular dichroism (CD) and molecular docking studies. The structural characteristics of hesperetin are monitored at different pH conditions (5.4, 6.4, 7.0, 7.4, 8.0, 8.4 and 9.0) and its binding affinity towards lysozyme is also determined using fluorescence study. It has been found that binding constant increased from pH 5.4 (0.154 × 104 M−1) to pH 7.0 (1.943 × 104 M−1), followed by a decreasing trend from pH 7.0 to 9.0 (1.293 × 104 M−1). The number of binding sites for hesperetin in lysozyme is estimated to be 1.394 ± 0.128 and negative ΔG (−23.345 ± 2.231 kJ mol−1) indicates the spontaneous nature of binding. Spectrofluorimetric analyses rationalized that the static quenching mechanism is present in the binding and the reason behind the upward curvature nature of Stern–Volmer plots are also discussed. The binding distance between lysozyme and hesperetin has been estimated according to Förster’s theory and a possibility of non-radiative energy transfer from lysozyme to hesperetin is observed. Synchronous and 3D fluorescence studies indicate that hesperetin binding induced apparent structural perturbation in lysozyme and it increased α-helicity of lysozyme by ~4 % (CD results). The interaction of hesperetin with lysozyme decreased the enzymatic activity of lysozyme and revealed the affinity of hesperetin towards the active site of lysozyme. Molecular docking study reveals that hesperetin prefers to bind in the close proximity of Trp 62 and Trp 63 and it is vital for catalytic activity of lysozyme. Keywords Lysozyme Hesperetin Binding constant Fluorescence Docking

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700