A Basic Toolbox for Constrained Quadratic 0/1 Optimization
详细信息    查看全文
文摘
In many practical applications, the task is to optimize a non-linear function over a well-studied polytope P as, e.g., the matching polytope or the travelling salesman polytope (TSP). In this paper, we focus on quadratic objective functions. Prominent examples are the quadratic assignment and the quadratic knapsack problem; further applications occur in various areas such as production planning or automatic graph drawing. In order to apply branch-and-cut methods for the exact solution of such problems, they have to be linearized. However, the standard linearization usually leads to very weak relaxations. On the other hand, problem-specific polyhedral studies are often time-consuming. Our goal is the design of general separation routines that can replace detailed polyhedral studies of the resulting polytope and that can be used as a black box. As unconstrained binary quadratic optimization is equivalent to the maximum cut problem, knowledge about cut polytopes can be used in our setting. Other separation routines are inspired by the local cuts that have been developed by Applegate, Bixby, Chv¨¢tal and Cook for faster solution of large-scale traveling salesman instances. By extensive experiments, we show that both methods can drastically accelerate the solution of constrained quadratic 0/1 problems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700