Correlation between Semi-Quantitative 18F-FDG PET/CT Parameters and Ki-67 Expression in Small Cell Lung Cancer
详细信息    查看全文
  • 作者:Soyeon Park ; Eunsub Lee ; Seunghong Rhee…
  • 关键词:Small ; cell lung carcinoma ; 18F ; FDG PET/CT ; Metabolic tumor volume ; Ki ; 67
  • 刊名:Nuclear Medicine and Molecular Imaging
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:50
  • 期:1
  • 页码:24-30
  • 全文大小:637 KB
  • 参考文献:1.van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet. 2011;378:1741–55.CrossRef PubMed
    2.Korea National Cancer Information Center. Annual report of cancer statistics in Korea in 2012. http://​www.​cancer.​go.​kr/​ . Accessed 15 Jun 2015.
    3.Johnson BE, Janne PA. Basic treatment considerations using chemotherapy for patients with small cell lung cancer. Hematol Oncol Clin N Am. 2004;18:309–22.CrossRef
    4.Alexandrakis MG, Passam FH, Kyriakou DS, Dambaki K, Niniraki M, Stathopoulos E. Ki-67 proliferation index: correlation with prognostic parameters and outcome in multiple myeloma. Am J Clin Oncol. 2004;27:8–13.CrossRef PubMed
    5.Li R, Heydon K, Hammond ME, Grignon DJ, Roach 3rd M, Wolkov HB, et al. Ki-67 staining index predicts distant metastasis and survival in locally advanced prostate cancer treated with radiotherapy: an analysis of patients in radiation therapy oncology group protocol 86–10. Clin Cancer Res. 2004;10:4118–24.CrossRef PubMed
    6.Stuart-Harris R, Caldas C, Pinder SE, Pharoah P. Proliferation markers and survival in early breast cancer: a systematic review and meta-analysis of 85 studies in 32,825 patients. Breast. 2008;17:323–34.CrossRef PubMed
    7.Martin B, Paesmans M, Mascaux C, Berghmans T, Lothaire P, Meert AP, et al. Ki-67 expression and patient’s survival in lung cancer: systematic review of the literature with meta-analysis. Br J Cancer. 2004;91:2018–25.PubMedCentral CrossRef PubMed
    8.Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231:305–32.CrossRef PubMed
    9.Zhu D, Ma T, Niu Z, Zheng J, Han A, Zhao S, et al. Prognostic significance of metabolic parameters measured by 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with small cell lung cancer. Lung Cancer. 2011;73:332–7.CrossRef PubMed
    10.Lee HY, Hyun SH, Lee KS, Kim BT, Kim J, Shim YM, et al. Volume-based parameter of 18F-FDG PET/CT in malignant pleural mesothelioma: prediction of therapeutic response and prognostic implications. Ann Surg Oncol. 2010;17:2787–94.CrossRef PubMed
    11.Xie P, Yue JB, Zhao HX, Sun XD, Kong L, Fu Z, et al. Prognostic value of 18F-FDG PET-CT metabolic index for nasopharyngeal carcinoma. J Cancer Res Clin Oncol. 2010;136:883–9.CrossRef PubMed
    12.Li YM, Lin Q, Zhao L, Wang LC, Sun L, Dai MM, et al. Pre-treatment metabolic tumor volume and total lesion glycolysis are useful prognostic factors for esophageal squamous cell cancer patients. Asian Pac J Cancer Prev. 2014;15:1369–73.CrossRef PubMed
    13.Yamamoto Y, Nishiyama Y, Ishikawa S, Nakano J, Chang SS, Bandoh S, et al. Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2007;34:1610–6.CrossRef PubMed
    14.Vesselle H, Salskov A, Turcotte E, Wiens L, Schmidt R, Jordan CD, et al. Relationship between non-small cell lung cancer FDG uptake at PET, tumor histology, and Ki-67 proliferation index. J Thorac Oncol. 2008;3:971–8.CrossRef PubMed
    15.Han B, Lin S, Yu LJ, Wang RZ, Wang YY. Correlation of 18F-FDG PET activity with expressions of survivin, Ki67, and CD34 in non-small-cell lung cancer. Nucl Med Commun. 2009;30:831–7.CrossRef PubMed
    16.Huang W, Zhou T, Ma L, Sun H, Gong H, Wang J, et al. Standard uptake value and metabolic tumor volume of 18F-FDG PET/CT predict short-term outcome early in the course of chemoradiotherapy in advanced non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2011;38:1628–35.CrossRef PubMed
    17.Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys. 2003;57:853–63.CrossRef PubMed
    18.Lee P, Weerasuriya DK, Lavori PW, Quon A, Hara W, Maxim PG, et al. Metabolic tumor burden predicts for disease progression and death in lung cancer. Int J Radiat Oncol Biol Phys. 2007;69:328–33.CrossRef PubMed
    19.Dingemans AM, Witlox MA, Stallaert RA, van der Valk P, Postmus PE, Giaccone G. Expression of DNA topoisomerase IIalpha and topoisomerase IIbeta genes predicts survival and response to chemotherapy in patients with small cell lung cancer. Clin Cancer Res. 1999;5:2048–58.PubMed
    20.Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133:1710–5.PubMed
    21.Cummings TJ, Provenzale JM, Hunter SB, Friedman AH, Klintworth GK, Bigner SH, et al. Gliomas of the optic nerve: histological, immunohistochemical (MIB-1 and p53), and MRI analysis. Acta Neuropathol. 2000;99:563–70.CrossRef PubMed
    22.Zlotta AR, Schulman CC. Biological markers in superficial bladder tumors and their prognostic significance. Urol Clin N Am. 2000;27:179–89. xi-xii.CrossRef
    23.Indinnimeo M, Cicchini C, Stazi A, Limiti MR, Ghini C, Mingazzini P, et al. Immunohistochemical assessment of Ki-67 as prognostic cellular proliferation marker in anal canal carcinoma. J Exp Clin Cancer Res. 2000;19:471–5.PubMed
    24.Jakobsen JN, Sorensen JB. Clinical impact of ki-67 labeling index in non-small cell lung cancer. Lung Cancer. 2013;79:1–7.CrossRef PubMed
    25.Yap CS, Czernin J, Fishbein MC, Cameron RB, Schiepers C, Phelps ME, et al. Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest. 2006;129:393–401.CrossRef PubMed
    26.Watanabe K, Nomori H, Ohtsuka T, Naruke T, Ebihara A, Orikasa H, et al. [F-18]fluorodeoxyglucose positron emission tomography can predict pathological tumor stage and proliferative activity determined by Ki-67 in clinical stage IA lung adenocarcinomas. Jpn J Clin Oncol. 2006;36:403–9.CrossRef PubMed
    27.Nguyen XC, Lee WW, Chung JH, Park SY, Sung SW, Kim YK, et al. FDG uptake, glucose transporter type 1, and Ki-67 expressions in non-small-cell lung cancer: correlations and prognostic values. Eur J Radiol. 2007;62:214–9.CrossRef PubMed
    28.Yang W, Zhang Y, Fu Z, Yu J, Sun X, Mu D, et al. Imaging of proliferation with 18F-FLT PET/CT versus 18F-FDG PET/CT in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2010;37:1291–9.CrossRef PubMed
    29.Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med. 2003;44:1426–31.PubMed
    30.Kaira K, Serizawa M, Koh Y, Takahashi T, Hanaoka H, Oriuchi N, et al. Relationship between 18F-FDG uptake on positron emission tomography and molecular biology in malignant pleural mesothelioma. Eur J Cancer. 2012;48:1244–54.CrossRef PubMed
    31.Inwald EC, Klinkhammer-Schalke M, Hofstadter F, Zeman F, Koller M, Gerstenhauer M, et al. Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res Treat. 2013;139:539–52.PubMedCentral CrossRef PubMed
    32.Tabata K, Tanaka T, Hayashi T, Hori T, Nunomura S, Yonezawa S, et al. Ki-67 is a strong prognostic marker of non-small cell lung cancer when tissue heterogeneity is considered. BMC Clin Pathol. 2014;14:23.PubMedCentral CrossRef PubMed
    33.Reymen B, Van Loon J, van Baardwijk A, Wanders R, Borger J, Dingemans AM, et al. Total gross tumor volume is an independent prognostic factor in patients treated with selective nodal irradiation for stage I to III small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;85:1319–24.CrossRef PubMed
    34.Pelosi G, Rodriguez J, Viale G, Rosai J. Typical and atypical pulmonary carcinoid tumor overdiagnosed as small-cell carcinoma on biopsy specispecimens: a major pitfall in the management of lung cancer patients. Am J Surg Pathol. 2005;29:179–87.CrossRef PubMed
    35.Righi L, Volante M, Tavaglione V, Bille A, Daniele L, Angusti T, et al. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 ‘clinically aggressive’ cases. Ann Oncol. 2010;21:548–55.CrossRef PubMed
    36.Bohm J, Koch S, Gais P, Jutting U, Prauer H, Hofler H. Prognostic value of MIB-1 in neuroendocrine tumours of the lung. J Pathol. 1996;178:402–9.CrossRef PubMed
    37.Arbiser Z, Arbiser J, Cohen C, Gal A. Neuroendocrine lung tumors: grade correlates with proliferation but not angiogenesis. Mod Pathol. 2001;14:1195–9.CrossRef PubMed
  • 作者单位:Soyeon Park (1)
    Eunsub Lee (1)
    Seunghong Rhee (2)
    Jaehyuk Cho (2)
    Sunju Choi (2)
    Sinae Lee (3)
    Jae Seon Eo (1)
    Kisoo Pahk (2) (4)
    Jae Gol Choe (2)
    Sungeun Kim (2)

    1. Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, South Korea
    2. Department of Nuclear Medicine, Korea University Anam Hospital, #73, Inchon-ro, Seongbuk-gu, Seoul, 136-705, South Korea
    3. Department of Nuclear Medicine, G Sam Hospital, Gunpo, South Korea
    4. Department of Neuroscience, College of Medicine, Korea University, Seoul, South Korea
  • 刊物主题:Nuclear Medicine; Imaging / Radiology; Orthopedics; Cardiology; Oncology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-3482
文摘
Purpose The aim of this study was to evaluate the relationship between semiquantitative parameters on 18F-FDG PET/CT including maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) and the expression level of Ki-67 in small-cell lung cancer (SCLC).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700