A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical disuse
详细信息    查看全文
  • 作者:C. Lerebours ; P. R. Buenzli ; S. Scheiner…
  • 关键词:Bone remodelling ; Site ; specific bone loss ; Trabecularisation ; Multiscale modelling ; Osteoporosis ; Mechanical disuse
  • 刊名:Biomechanics and Modeling in Mechanobiology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:15
  • 期:1
  • 页码:43-67
  • 全文大小:3,630 KB
  • 参考文献:Adachi T, Aonuma Y, Ito SI, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H (2009a) Osteocyte calcium signaling response to bone matrix deformation. J Biomech 42(15):2507–2512CrossRef
    Adachi T, Aonuma Y, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H (2009) Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body. J Biomech 42(12):1989–1995. doi:10.​1016/​j.​jbiomech.​2009.​04.​034 CrossRef
    Ashman R, Cowin S, Van Buskirk W, Rice J (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17(5):349–361. doi:10.​1016/​0021-9290(84)90029-0 CrossRef
    Ausk BJ, Huber P, Poliachik SL, Bain SD, Srinivasan S, Gross TS (2012) Cortical bone resorption following muscle paralysis is spatially heterogeneous. Bone 50(1):14–22CrossRef
    Ausk BJ, Huber P, Srinivasan S, Bain SD, Kwon RY, McNamara EA, Poliachik SL, Sybrowsky CL, Gross TS (2013) Metaphyseal and diaphyseal bone loss in the tibia following transient muscle paralysis are spatiotemporally distinct resorption events. Bone 57(2):413–422CrossRef
    Bauchau OA, Craig JI (2009) Structural analysis. With applications to aerospace structures, solid mech edn. Springer, Berlin
    Bloomfield SA, Allen MR, Hogan HA, Delp MD (2002) Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats. Bone 31(1):149–157CrossRef
    Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–38CrossRef
    Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–15CrossRef
    Bousson V, Meunier A, Bergot C, Vicaut E, Rocha MA, Morais MH, Laval-Jeantet AM, Laredo JD (2001) Distribution of intracortical porosity in human midfemoral cortex by age and gender. J Bone Miner Res 16(7):1308–17. doi:10.​1359/​jbmr.​2001.​16.​7.​1308 CrossRef
    Buenzli PR, Sims NA (2015) Quantifying the osteocyte network in the human skeleton. Bone (In Press), doi:10.​1016/​j.​bone.​2015.​02.​016
    Buenzli PR, Pivonka P, Gardiner BS, Smith DW (2012) Modelling the anabolic response of bone using a cell population model. J Theor Biol 307:42–52MathSciNet CrossRef
    Buenzli PR, Thomas CDL, Clement JG, Pivonka P (2013) Endocortical bone loss in osteoporosis: the role of bone surface availability. Int J Numer Methods Biomed Eng 29(12):1307–1322. doi:10.​1002/​cnm.​2567 CrossRef
    Buenzli PR, Pivonka P, Smith DW (2014) Bone refilling in cortical basic multicellular units: insights into tetracycline double labelling from a computational model. Biomech Model Mechanobiol 13(1):185–203. doi:10.​1007/​s10237-013-0495-y CrossRef
    Burger EH, J Klein-Nulend, Jand Smit TH (2003) Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon: a proposal. J Biomech 36:1453–1459. doi:10.​1016/​S0021-9290(03)00126-X CrossRef
    Burghardt AJ, Kazakia GJ, Sode M, de Papp AE, Link TM, Majumdar S (2010) A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: Relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res 25(12): 2558–2571CrossRef
    Burr D (1997) Muscle strength, bone mass, and age related bone loss. J Bone Miner Res 12(10):1547–1551. doi:10.​1359/​jbmr.​1997.​12.​10.​1547 CrossRef
    Burr DB, Hirano T, Turner CH, Hotchkiss C, Brommage R, Hock JM (2001) Intermittently administered human parathyroid hormone(1–34) treatment increases intracortical bone turnover and porosity without reducing bone strength in the humerus of ovariectomized cynomolgus monkeys. J Bone Miner Res 16(1):157–165. doi:10.​1359/​jbmr.​2001.​16.​1.​157 CrossRef
    Busse B, Bale HA, Zimmermann EA, Panganiban B, Barth HD, Carriero A, Vettorazzi E, Zustin J, Hahn M, Ager JW, Püschel K, Amling M, Ritchie RO (2013) Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. Sci Transl Med 5(193):1–11. doi:10.​1126/​scitranslmed.​3006286 CrossRef
    Carpenter RD, Carter DR (2008) The mechanobiological effects of periosteal surface loads. Biomech Model Mechanobiol 7(3):227–242. doi:10.​1007/​s10237-007-0087-9 CrossRef
    Carter DR, Beaupré GS (2001) Skeletal function and form. Cambridge University Press, Cambridge
    Carter DR, Hayes WC (1977) The compressive behavior porous of bone structure as a two-phase. J Bone Joint Surg 59(7):954–962
    Chappard D, Retailleau-Gaborit N, Legrand E, Baslé MF, Audran M (2005) Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 20(7):1177–1184CrossRef
    Christen P, Ito K, Müller R, Rubin MR, Dempster DW, Bilezikian JP, Van Rietbergen B (2012) Patient-specific bone modelling and remodelling simulation of hypoparathyroidism based on human iliac crest biopsies. J Biomech 45(14):2411–2416CrossRef
    Christen P, Ito K, Santos AAD, Müller R, van Rietbergen B (2013) Validation of a bone loading estimation algorithm for patient-specific bone remodelling simulations. J Biomech 46(5):941–948CrossRef
    Collet P, Uebelhart D, Vico L, Moro L, Hartmann D, Roth M, Alexandre C (1997) Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone 20(6):547–551CrossRef
    Cordey J, Gautier E (1999) Strain gauges used in the mechanical testing of bones. Part III: strain analysis, graphic determination of the neutral axis. Injury 30:SA21–SA25CrossRef
    Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 28(1):2–17. doi:10.​1002/​jbmr.​1805 CrossRef
    Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, Schiessl H (2004) Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 34:869–880CrossRef
    Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A Math Phys Eng Sci 241(1226):376–396MathSciNet MATH CrossRef
    Fan X, Roy E, Zhu L, Murphy TC, Ackert-Bicknell C, Hart CM, Rosen C, Nanes MS, Rubin J (2004) Nitric oxide regulates receptor activator of nuclear factor-kappaB ligand and osteoprotegerin expression in bone marrow stromal cells. Endocrinology 145(2):751–759. doi:10.​1210/​en.​2003-0726 CrossRef
    Feik SA, Thomas CD, Clement JG (1997) Age-related changes in cortical porosity of the midshaft of the human femur. J Anat 191:407–416CrossRef
    Feik SA, Thomas CD, Bruns R, Clement JG (2000) Regional variations in cortical modeling in the femoral mid-shaft: sex and age differences. Am J Phys Anthropol 112(2):191–205CrossRef
    Felsenberg D, Boonen S (2005) The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 27(1):1–11CrossRef
    Forner-Cordero A, Koopman HJFM, Van der Helm FCT (2006) Inverse dynamics calculations during gait with restricted ground reaction force information from pressure insoles. Gait Posture 23(2):189–199CrossRef
    Fritsch A, Hellmich C, Dormieux L (2009) Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol 260(2):230–252. doi:10.​1016/​j.​jtbi.​2009.​05.​021 CrossRef
    Fritsch A, Hellmich C (2007) ’Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244(4):597–620. doi:10.​1016/​j.​jtbi.​2006.​09.​013 CrossRef
    Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219(1):1–9. doi:10.​1002/​ar.​1092190104 MathSciNet CrossRef
    Frost HM (1997) On our age-related bone loss: insights from a new paradigm. J Bone Miner Res 12(10):1539–1546. doi:10.​1359/​jbmr.​1997.​12.​10.​1539 CrossRef
    Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275(2):1081–1101. doi:10.​1002/​ar.​a.​10119 MathSciNet CrossRef
    Fyhrie DP, Carter DR (1986) A unifying principle relating stress to trabecular bone morphology. J Orthop Res 4(3):304–317CrossRef
    Fyhrie DP, Kimura JH (1999) Cancellous bone biomechanics. J Biomech 32(11):1139–1148. doi:10.​1016/​S0021-9290(99)00114-1 CrossRef
    García-Aznar JM, Rueberg T, Doblare M (2005) A bone remodelling model coupling micro-damage growth and repair by 3D BMU-activity. Biomech Model Mechanobiol 4(2–3):147–167. doi:10.​1007/​s10237-005-0067-x CrossRef
    Gitman IM, Askes H, Kuhl E, Aifantis EC (2010) Stress concentrations in fractured compact bone simulated with a special class of anisotropic gradient elasticity. Int J Solids Struct 47(9):1099–1107. doi:10.​1016/​j.​ijsolstr.​2009.​11.​020 MATH CrossRef
    Hellmich C, Ulm FJ, Dormieux L (2004) Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Arguments from a multiscale approach. Biomech Model Mechanobiol 2(4):219–238. doi:10.​1007/​s10237-004-0040-0 CrossRef
    Hellmich C, Kober C, Erdmann B (2008) Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann Biomed Eng 36(1):108–122. doi:10.​1007/​s10439-007-9393-8 CrossRef
    Hernandez CJ, Beaupré GS, Keller TS, Carter DR (2001) The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone 29(1):74–78CrossRef
    Hill R (1963) Elastic properties of reinforced solids. J Mech Phys Solids 11(5):357–372MATH CrossRef
    Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222. doi:10.​1016/​0022-5096(65)90010-4 CrossRef
    Hipp JA, Edgerton BC, An KN, Hayes WC (1990) Structural consequences of transcortical holes in long bones loaded in torsion. J Biomech 23:1261–1268CrossRef
    Hirano T, Burr DB, Cain RL, Hock JM (2000) Changes in geometry and cortical porosity in adult, ovary-intact rabbits after 5 months treatment with LY333334 (hPTH 1–34). Calcif Tissue Int 66:456–460. doi:10.​1007/​s002230010091 CrossRef
    Hjelmstad KD (2005) Fundamentals of structural mechanics, 2nd edn. Springer, Berlin
    Huiskes R, Ruimerman R, Van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787):704–706. doi:10.1038/35015116
    Jepsen KJ, Andarawis-Puri N (2012) The amount of periosteal apposition required to maintain bone strength during aging depends on adult bone morphology and tissue-modulus degradation rate. J Bone Miner Res 27(9):1916–1926. doi:10.​1002/​jbmr.​1643 CrossRef
    Jones SH (1974) Secretory territories and rates of matrix production of osteoblasts. Calcif Tissue Res 14:309–315CrossRef
    Judex S, Garman R, Squire M, Busa B, Donahue LR, Rubin C (2004) Genetically linked site-specificity of disuse osteoporosis. J Bone Miner Res 19(4):607–613. doi:10.​1359/​JBMR.​040110 CrossRef
    Kasiri S, Taylor D (2008) A critical distance study of stress concentrations in bone. J Biomech 41:603–609. doi:10.​1016/​j.​jbiomech.​2007.​10.​003 CrossRef
    Kaspar D, Seidl W, Neidlinger-Wilke C, Beck A, Claes L, Ignatius A (2002) Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 35(7):873–880. doi:10.​1016/​S0021-9290(02)00058-1 CrossRef
    Kerschnitzki M, Kollmannsberger P, Burghammer M, Duda GN, Weinkamer R, Wagermaier W, Fratzl P (2013) Architecture of the osteocyte network correlates with bone material quality. J Bone Miner Res 28(8):1837–1845. doi:10.​1002/​jbmr.​1927 CrossRef
    Kiratli BJ, Smith AE, Nauenberg T, Kallfelz CF, Perkash I (2000) Bone mineral and geometric changes through the femur with immobilization due to spinal cord injury. J Rehabil Res Dev 37: 225–233
    Knothe Tate ML, Knothe U, Niederer P (1998) Experimental eludication of mechanical load-induced fluid flow and its potential role in bone metabolism and functional adaptation. Am J Med Sci 316(3):189–195
    Knothe Tate ML (2003) Whither flows the fluid in bone? An osteocyte’s perspective. J Biomech 36(10):1409–1424. doi:10.​1016/​S0021-9290(03)00123-4 CrossRef
    Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19(6):1006–1012CrossRef
    Lanyon LE, Goodship AE, Pye CJ, MacFie JH (1982) Mechanically adaptive bone remodelling. J Biomech 15(3):141–154CrossRef
    Lanyon LE, Rubin CT (1984) Static versus dynamic loads as an influence on bone remodelling. J Biomech 17(12):897–905CrossRef
    Laws N (1977) The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material. J Elast 7(1):91–97MathSciNet MATH CrossRef
    Leblanc AD, Spector ER, Evans HJ, Sibonga JD (2007) Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact 7(1):33–47
    Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229(3):293–309. doi:10.​1016/​j.​jtbi.​2004.​03.​023 MathSciNet CrossRef
    Lerebours C, Thomas C, Clement J, Buenzli P, Pivonka P (2015) The relationship between porosity and specific surface in human cortical bone is subject specific. Bone 72:109–117. doi:10.​1016/​j.​bone.​2014.​11.​016 CrossRef
    Levenston ME, Carter DR (1998) An energy dissipation-based model for damage stimulated bone adaptation. J Biomech 31(7):579–586
    Lloyd DG, Besier TF (2003) An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 36(6):765–776. doi:10.​1016/​S0021-9290(03)00010-1 CrossRef
    Malluche HH, Porter DS, Monier-Faugere M, Mawad H, Pienkowski D (2012) Differences in bone quality in low- and high-turnover renal osteodystrophy. J Am Soc Nephrol 23(3):525–532. doi:10.​1681/​ASN.​2010121253 CrossRef
    Marotti G (2000) The osteocyte as a wiring transmission system. J Musculoskelet Neuronal Interact 1(2):133–136
    Marotti G, Zallone AZ (1976) Number, size and arrangement of osteoblasts in osteons at different stages of formation. Calcif Tissue Int 21(suppl):96
    Martelli S, Pivonka P, Ebeling PR (2014) Femoral shaft strains during daily activities: implications for atypical femoral fractures. Clin Biomech 29(8):869–876. doi:10.​1016/​j.​clinbiomech.​2014.​08.​001 CrossRef
    Martin RB (1972) Effects of geometric feedback in osteoporosis. J Biomech 5:447–455CrossRef
    Martin RB (1984) Porosity and specific surface of bone. Crit Rev Biomed Eng 10(3):179–222
    Martin TJ (2004) Paracrine regulation of osteoclast formation and activity: milestones in discovery. J Musculoskelet Neuronal Interact 4(3):243–253
    McNamara LM, Prendergast PJ (2007) Bone remodelling algorithms incorporating both strain and microdamage stimuli. J Biomech 40(6):1381–1391CrossRef
    Mittlmeier T, Mattheck C, Dietrich F (1994) Effects of mechanical loading on the profile of human femoral diaphyseal geometry. Med Eng Phys 16:75–81. doi:10.​1016/​1350-4533(94)90014-0 CrossRef
    Morin C, Hellmich C (2014) A multiscale poromicromechanical approach to wave propagation and attenuation in bone. Ultrasonics 54(5):1251–1269. doi:10.​1016/​j.​ultras.​2013.​12.​005 CrossRef
    Mosekilde L (1990) Consequences of the remodeling process for vertebral trabecular bone-structure: a scanning electron-microscopy study (uncoupling of unloaded structures). Bone Miner 10:13–35CrossRef
    Mullender MG, Huiskes R, Weinans H (1994) A physiological approach to the simulation of bone remodeling as a self-organizational control process. J Biomech 27(11):1389–1394CrossRef
    Murdock J (1996) Mechanics of Fluids. In: McGraw-Hill (ed) Mark’s standard handbook for mechanical engineers, 10th edn, McGraw-Hill, pp 3.29–3.61
    Nordin BEC, Need AG, Chatterton BE, Horowitz M, Morris HA (1988) The relative contributions of age and years since menopause to postmenopausal bone loss. J Clin Endocrinol Metab 70(1):83–88CrossRef
    Parfitt A (1983) The physiologic and clinical significance of bone histomorphometric data. In: Recker R (ed) Bone histomorphometry: techniques and interpretation, chap 9. CRC Press, Boca Raton, pp 143–224
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 2(6):595–610. doi:10.​1002/​jbmr.​5650020617 CrossRef
    Parfitt A (1998) A structural approach to renal bone disease. J Bone Miner Res 13(8):1213–1220CrossRef
    Parfitt A, Chir B (1987) Bone remodeling and bone loss: understanding the pathophysiology of osteoporosis. Clin Obstet Gynecol 30(4):789–811CrossRef
    Pettermann H, Reiter T, Rammerstorfer F (1997) Computational simulation of internal bone remodeling. Archiv Comput Methods Eng 4(4):295–323CrossRef
    Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, Martin TJ, Mundy GR (2008) Model structure and control of bone remodeling: a theoretical study. Bone 43(2):249–263. doi:10.​1016/​j.​bone.​2008.​03.​025 CrossRef
    Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Na Sims, Martin TJ, Mundy GR (2010) Theoretical investigation of the role of the RANK–RANKL–OPG system in bone remodeling. J Theor Biol 262(2):306–316. doi:10.​1016/​j.​jtbi.​2009.​09.​021 CrossRef
    Pivonka P, Buenzli PR, Scheiner S, Hellmich C, Dunstan CR (2013) The influence of bone surface availability in bone remodelling: a mathematical model including coupled geometrical and biomechanical regulations of bone cells. Eng Struct 47:134–147CrossRef
    Pivonka P, Buenzli PR, Dunstan CR (2012) A systems approach to understanding bone cell interactions in health and disease. In: Gowder S (ed) Cell interactions, chap. 7
    Prendergast PJ, Taylor D (1994) Prediction of bone adaptation using damage accumulation. J Biomech 27(8):1067–1076CrossRef
    Raisz LG, Seeman E (2001) Causes of age-related bone loss and bone fragility: an alternative view. J Bone Miner Res 16(11):1948–1952CrossRef
    Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2):92–102CrossRef
    Rittweger J, Simunic B, Bilancio G, Gaspare De Santo N, Cirillo M, Biolo G, Pisot R, Eiken O, Mekjavic IB, Narici M (2009) Bone loss in the lower leg during 35 days of bed rest is predominantly from the cortical compartment. Bone 44(4):612–618. doi:10.​1016/​j.​bone.​2009.​01.​001 CrossRef
    Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498CrossRef
    Roodman GD (1999) Cell biology of the osteoclast. Exp Hematol 27(8):1229–1241CrossRef
    Ruff CB (2000) Body size, body shape, and long bone strength in modern humans. J Hum Evol 38(2):269–290. doi:10.​1006/​jhev.​1999.​0322 CrossRef
    Ruimerman R, Van Rietbergen B, Hilbers P, Huiskes R (2005) The effects of trabecular-bone loading variables on the surface signaling potential for bone remodeling and adaptation. Ann Biomed Eng 33(1):71–78CrossRef
    Russo CR, Lauretani F, Seeman E, Bartali B, Bandinelli S, Di Iorio A, Guralnik J, Ferrucci L (2006) Structural adaptations to bone loss in aging men and women. Bone 38:112–118. doi:10.​1016/​j.​bone.​2005.​07.​025 CrossRef
    Salencon J (2001) Handbook of continuum mechanics (general concepts, thermoelasticity), 1st edn. Springer, BerlinMATH CrossRef
    Scheiner S, Pivonka P, Hellmich C (2013) Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling. Comput Methods Appl Mech Eng 254:181–196. doi:10.​1016/​j.​cma.​2012.​10.​015 MathSciNet MATH CrossRef
    Skerry TM, Bitensky L, Chayen J, Lanyon LE (1988) Loading-related reorientation of bone proteoglycan in vivo. Strain memory in bone tissue? J Orthop Res 6(4):547–551CrossRef
    Squire M, Brazin A, Keng Y, Judex S (2008) Baseline bone morphometry and cellular activity modulate the degree of bone loss in the appendicular skeleton during disuse. Bone 42(2):341–349. doi:10.​1016/​j.​bone.​2007.​09.​052 CrossRef
    Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21(12):1856–1863. doi:10.​1359/​jbmr.​060904 CrossRef
    Tan SD, de Vries TJ, Kuijpers-Jagtman AM, Semeins CM, Everts V, Klein-Nulend J (2007) Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41:745–751. doi:10.​1016/​j.​bone.​2007.​07.​019 CrossRef
    Thomas CDL, Feik SA, Clement JG (2005) Regional variation of intracortical porosity in the midshaft of the human femur: age and sex differences. J Anat 206(2):115–125. doi:10.1111/j.1469-7580.2005.00384.x
    Timoshenko S, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New YorkMATH
    Turner CH, Robling AG, Duncan RL, Burr DB (2002) Do bone cells behave like a neuronal network? Calcif Tissue Int 70(6):435–442CrossRef
    Van der Meulen MCH, Beaupre GS, Carter DR (1993) Mechanobiologic influences in long bone cross-sectional growth. Bone 14(4):635–642
    Van Oers RFM, Ruimerman R, Tanck E, Hilbers PAJ, Huiskes R (2008) A unified theory for osteonal and hemi-osteonal remodeling. Bone 42(2):9–250. doi:10.1016/j.bone.2007.10.009
    Van Rietbergen B, Müller R, Ulrich D, Rüegsegger P, Huiskes R (1999) Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J Biomech 32(4):51–443
    Vaughan CL, Davis BL, O’Connor JC (1992) Dynamics of human gait. Kiboho Publishers, Cape Town
    Viceconti M, Testi D, Taddei F, Martelli S, Clapworthy GJ, Jan S (2006) Biomechanics modeling of the musculoskeletal apparatus : status and key issues. Proc IEEE 94(4):725–739CrossRef
    Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehailia M, Alexandre C (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355(9215):1607–1611. doi:10.​1016/​S0140-6736(00)02217-0 CrossRef
    Wang FS, Wang CJ, Chen YJ, Huang YT, Huang HC, Chang PR, Sun YC, Yang KD (2004) Nitric oxide donor increases osteoprotegerin production and osteoclastogenesis inhibitory activity in bone marrow stromal cells from ovariectomized rats. Endocrinology 145:2148–2156CrossRef
    Warner SE, Sanford DA, Becker BA, Bain SD, Srinivasan S, Gross TS (2006) Botox induced muscle paralysis rapidly degrades bone. Bone 38:257–264CrossRef
    Weinans H, Huiskes R, Grootenboer HJ (1992) The behavior of adaptive bone-remodeling simulation models. J Biomech 25(12):1425–1441CrossRef
    Weinbaum S, Cowin S, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27(3):339–360. doi:10.​1016/​0021-9290(94)90010-8 CrossRef
    Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28(1):271–298CrossRef
    Weyts F, Bosmans B, Niesing R, Van Leeuwen J, Weinans H (2003) Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcif Tissue Int 72(4):505–512. doi:10.​1007/​s00223-002-2027-0 CrossRef
    Zaoui A (1997) Structural morphology and constitutive behavior of microheterogeneous materials. In: Suquet P (ed) Continuum Micromech. Springer, Wien, pp 291–347CrossRef
    Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128(August):808–816CrossRef
    Zebaze RMD, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736. doi:10.​1016/​S0140-6736(10)60320-0 CrossRef
  • 作者单位:C. Lerebours (1)
    P. R. Buenzli (1)
    S. Scheiner (2)
    P. Pivonka (3)

    1. School of Mathematical Sciences, Monash University, Clayton, VIC, 3800, Australia
    2. Institute for Mechanics of Materials and Structures, TU Wien, Vienna University of Technology, Karlsplatz 13/202, 1040, Vienna, Austria
    3. St Vincent’s Department of Surgery, The University of Melbourne, Fitzroy, VIC, 3065, Australia
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Biomedical Engineering
    Mechanics
    Biophysics and Biomedical Physics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1617-7940
文摘
We propose a multiscale mechanobiological model of bone remodelling to investigate the site-specific evolution of bone volume fraction across the midshaft of a femur. The model includes hormonal regulation and biochemical coupling of bone cell populations, the influence of the microstructure on bone turnover rate, and mechanical adaptation of the tissue. Both microscopic and tissue-scale stress/strain states of the tissue are calculated from macroscopic loads by a combination of beam theory and micromechanical homogenisation. This model is applied to simulate the spatio-temporal evolution of a human midshaft femur scan subjected to two deregulating circumstances: (i) osteoporosis and (ii) mechanical disuse. Both simulated deregulations led to endocortical bone loss, cortical wall thinning and expansion of the medullary cavity, in accordance with experimental findings. Our model suggests that these observations are attributable to a large extent to the influence of the microstructure on bone turnover rate. Mechanical adaptation is found to help preserve intracortical bone matrix near the periosteum. Moreover, it leads to non-uniform cortical wall thickness due to the asymmetry of macroscopic loads introduced by the bending moment. The effect of mechanical adaptation near the endosteum can be greatly affected by whether the mechanical stimulus includes stress concentration effects or not.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700