Fluid dwell impact induces peritoneal fibrosis in the peritoneal cavity reconstructed in vitro
详细信息    查看全文
  • 作者:Shigehisa Aoki ; Mitsuru Noguchi ; Toshiaki Takezawa…
  • 关键词:Epithelial–mesenchymal transition ; Nitric oxide ; Shear stress
  • 刊名:Journal of Artificial Organs
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:19
  • 期:1
  • 页码:87-96
  • 全文大小:1,917 KB
  • 参考文献:1.García-López E, Lindholm B, Davies S. An update on peritoneal dialysis solutions. Nat Rev Nephrol. 2012;8:224–33.CrossRef PubMed
    2.Yamaguchi H, Kojima H, Takezawa T. Vitrigel-eye irritancy test method using HCE-T cells. Toxicol Sci. 2013;135:347–55.CrossRef PubMed
    3.Aoki S, Makino J, Nagashima A, Takezawa T, Nomoto N, Uchihashi K, et al. Fluid flow stress affects peritoneal cell kinetics: possible pathogenesis of peritoneal fibrosis. Perit Dial Int. 2011;31:466–76.CrossRef PubMed
    4.Jalali S, Li YS, Sotoudeh M, Yuan S, Li S, Chien S, et al. Shear stress activates p60src-Ras-MAPK signaling pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18:227–34.CrossRef PubMed
    5.Surapisitchat J, Hoefen RJ, Pi X, Yoshizumi M, Yan C, Berk BC. Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: inhibitory crosstalk among MAPK family members. Proc Natl Acad Sci USA. 2001;98:6476–81.CrossRef PubMed PubMedCentral
    6.Combet S, Miyata T, Moulin P, Pouthier D, Goffin E, Devuyst O. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol. 2000;11:717–28.PubMed
    7.Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–37.CrossRef PubMed PubMedCentral
    8.Ni J, Moulin P, Gianello P, Feron O, Balligand J-L, Devuyst O. Mice that lack endothelial nitric oxide synthase are protected against functional and structural modifications induced by acute peritonitis. J Am Soc Nephrol. 2003;14:3205–16.CrossRef PubMed
    9.Chen J-Y, Chiu J-H, Chen H-L, Chen T-W, Yang W-C, Yang A-H. Human peritoneal mesothelial cells produce nitric oxide: induction by cytokines. Perit Dial Int. 2000;20:772–7.PubMed
    10.Mortier S, Faict D, Schalkwijk CG, Lameire NH, De Vriese AS. Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney Int. 2004;66:1257–65.CrossRef PubMed
    11.White R, Barefield D, Ram S, Work J. Peritoneal dialysis solutions reverse the hemodynamic effects of nitric oxide synthesis inhibitors. Kidney Int. 1995;48:1986–93.CrossRef PubMed
    12.Reimann D, Dachs D, Meye C, Gross P. Amino acid-based peritoneal dialysis solution stimulates mesothelial nitric oxide production. Perit Dial Int. 2004;24:378–84.PubMed
    13.Aoki S, Takezawa T, Oshikata-Miyazaki A, Ikeda S, Kuroyama H, Chimuro T, et al. Epithelial-to-mesenchymal transition and slit function of mesothelial cells are regulated by the cross talk between mesothelial cells and endothelial cells. Am J Physiol Renal Physiol. 2014;306:F116–22.CrossRef PubMed
    14.Yáñez-Mó M, Lara-Pezzi E, Selgas R, Ramírez-Huesca M, Domínguez-Jiménez C, Jiménez-Heffernan JA, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003;348:403–13.CrossRef PubMed
    15.Aroeira LS, Aguilera A, Sanchez-Tomero JA, Bajo MA, del Peso G, Jimenez-Heffernan JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol. 2007;18:2004–13.CrossRef PubMed
    16.Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21:1077–85.CrossRef PubMed
    17.Kadoya H, Satoh M, Nagasu H, Sasaki T, Kashihara N. Deficiency of endothelial nitric oxide signaling pathway exacerbates peritoneal fibrosis in mice. Clin Exp Nephrol. 2014;. doi:10.​1007/​s10157-014-1029-3 .PubMed
    18.Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11:109–19.CrossRef PubMed PubMedCentral
    19.Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA. 2001;98:2604–9.CrossRef PubMed PubMedCentral
    20.Devuyst O. New insights in the molecular mechanisms regulating peritoneal permeability. Nephrol Dial Transplant. 2002;17:548–51.CrossRef PubMed
    21.Rizzo V, McIntosh DP, Oh P, Schnitzer JE. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem. 1998;273:34724–9.CrossRef PubMed
    22.Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol. 2003;285:C499–508.CrossRef PubMed
    23.Polubinska A, Breborowicz A, Staniszewski R, Oreopoulos DG. Normal saline induces oxidative stress in peritoneal mesothelial cells. J Pediatr Surg. 2008;43:1821–6.CrossRef PubMed
    24.Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.CrossRef PubMed
    25.Noh H, Kim J, Han K, Lee G, Song J, Chung S, et al. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int. 2006;69:2022–8.CrossRef PubMed
    26.Cooke M, John P, Dzau M, Victor J. Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med. 1997;48:489–509.CrossRef PubMed
    27.Witowski J, Topley N, Jorres A, Liberek T, Coles GA, Williams JD. Effect of lactate-buffered peritoneal dialysis fluids on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis. Kidney Int. 1995;47:282–93.CrossRef PubMed
    28.Topley N, Kaur D, Petersen MM, Jorres A, Passlick-Deetjen J, Coles GA, et al. Biocompatibility of bicarbonate buffered peritoneal dialysis fluids: influence on mesothelial cell and neutrophil function. Kidney Int. 1996;49:1447–56.CrossRef PubMed
    29.Ogata S, Naito T, Yorioka N, Kiribayashi K, Kuratsune M, Kohno N. Effect of lactate and bicarbonate on human peritoneal mesothelial cells, fibroblasts and vascular endothelial cells, and the role of basic fibroblast growth factor. Nephrol Dial Transplant. 2004;19:2831–7.CrossRef PubMed
  • 作者单位:Shigehisa Aoki (1)
    Mitsuru Noguchi (2)
    Toshiaki Takezawa (3)
    Satoshi Ikeda (1)
    Kazuyoshi Uchihashi (1)
    Hiroyuki Kuroyama (4)
    Tomoyuki Chimuro (4)
    Shuji Toda (1)

    1. Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
    2. Department of Urology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
    3. Division of Animal Sciences, National Institute of Agrobiological Sciences, Ibaraki, Japan
    4. Isehara Research Laboratory, Kanto Chemical Co. Inc., Tokyo, Japan
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Surgery
    Cardiac Surgery
    Biomedical Engineering
    Orthopedics
    Nephrology
    Hepatology
  • 出版者:Springer Japan
  • ISSN:1619-0904
文摘
Peritoneal fluid dwell impacts the peritoneum by creating an abnormal physiological microenvironment. Little is known about the precise effects of fluid dwell on the peritoneum, and no adequate in vitro models to analyze the impact of fluid dwell have been established. In this study, we developed a peritoneal fluid dwell model combined with an artificial peritoneal cavity and fluid stirring generation system to clarify the effects of different dwelling solutions on the peritoneum over time. To replicate the peritoneal cavity, we devised a reconstructed peritoneal cavity utilizing a mesothelial layer, endothelial layer, and collagen membrane chamber. The reconstructed peritoneal cavity was infused with Dulbecco’s modified Eagle’s medium, saline, lactated Ringer’s solution or peritoneal dialysis solution with repeated 4-h dwells for 10 or 20 consecutive days. The above-described solutions induced epithelial–mesenchymal transition (EMT) and hyperplasia of mesothelial cells. All solution types modulated nitric oxide synthase activities in mesothelial and endothelial cells and nitric oxide concentrations in dwelling solutions. Inhibition of nitric oxide synthase activity acted synergistically on mesothelial EMT and hyperplasia. The present findings suggest that solutions infused into the peritoneal cavity are likely to affect nitric oxide production in the peritoneum and promote peritoneal fibrosis. Our newly devised peritoneal cavity model should be a promising tool for understanding peritoneal cellular kinetics and homeostasis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700