Arbitrary protein?protein docking targets biologically relevant interfaces
详细信息    查看全文
  • 作者:Juliette Martin (1)
    Richard Lavery (1)
  • 关键词:Protein structure ; Protein ; protein interaction ; Docking ; Interface prediction
  • 刊名:BMC Biophysics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:5
  • 期:1
  • 全文大小:1186KB
  • 参考文献:1. Davey NE, Travé G, Gibson TJ: How viruses hijack cell regulation. / Trends Biochem. Sci 2011, 36:159-69. CrossRef
    2. de Curtis I: Host-Pathogen Interactions: Cheating the Host by Making New Connections. / Current Biology 2011, 21:R192-R194. CrossRef
    3. Wells JA, McClendon CL: Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. / Nature 2007, 450:1001-009. CrossRef
    4. Janin J, Miller S, Chothia C: Surface, subunit interfaces and interior of oligomeric proteins. / Journal of Molecular Biology 1988, 204:155-64. CrossRef
    5. Thornton JM, Singh J, Campbell S, Blundell TL: Protein-protein recognition via side-chain interactions. / Biochem. Soc. Trans 1988, 16:927-30.
    6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. / Nucleic Acids Research 2000, 28:235-42. CrossRef
    7. Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C: Transient Protein-Protein Interactions: Structural, Functional, and Network Properties. / Structure 2010, 18:1233-243. CrossRef
    8. Ezkurdia I, Bartoli L, Fariselli P, Casadio R, Valencia A, Tress ML: Progress and challenges in predicting protein-protein interaction sites. / Brief. Bioinformatics 2009, 10:233-46. CrossRef
    9. de Vries SJ, Bonvin AMJJ: How proteins get in touch: interface prediction in the study of biomolecular complexes. / Curr. Protein Pept. Sci 2008, 9:394-06. CrossRef
    10. Zhou H-X, Qin S: Interaction-site prediction for protein complexes: a critical assessment. / Bioinformatics 2007, 23:2203-209. CrossRef
    11. Zacharias M: Accounting for conformational changes during protein-protein docking. / Curr. Opin. Struct. Biol 2010, 20:180-86. CrossRef
    12. Lensink MF, Wodak SJ: Docking and scoring protein interactions: CAPRI 2009. / Proteins 2010, 78:3073-084. CrossRef
    13. Kastritis PL, Bonvin AMJJ: Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark. / J. Proteome Res 2010, 9:2216-225. CrossRef
    14. Kastritis PL, Moal IH, Hwang H, Weng Z, Bates PA: / Bonvin AMJJ. A structure-based benchmark for protein-protein binding affinity. Protein Sci, Janin J; 2011.
    15. Sacquin-Mora S, Carbone A, Lavery R: Identification of Protein Interaction Partners and Protein–Protein Interaction Sites. / Journal of molecular biology 2008, 382:1276-289. CrossRef
    16. Zacharias M: Protein-protein docking with a reduced protein model accounting for side-chain flexibility. / Protein Sci. 2003, 12:1271-282. CrossRef
    17. Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, Shen Y, Li K, Zheng J, Vakili P, Paschalidis IC, Vajda S: Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13-9. / Proteins 2010, 78:3124-130. CrossRef
    18. Wass MN, Fuentes G, Pons C, Pazos F, Valencia A: Towards the prediction of protein interaction partners using physical docking. / Mol Syst Biol 2011, 7:469. CrossRef
    19. Batada NN, Shepp LA, Siegmund DO: Stochastic model of proteinprotein interaction: Why signaling proteins need to be colocalized. / Proceedings of the National Academy of Sciences of the United States of America 2004, 101:6445-449. CrossRef
    20. McGuffee SR, Elcock AH: Diffusion. / Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm. PLoS Comput Biol 2010, 6:e1000694.
    21. Johnson ME, Hummer G: Nonspecific binding limits the number of proteins in a cell and shapes their interaction networks. / Proceedings of the National Academy of Sciences 2011, 108:603-08. CrossRef
    22. Hwang H, Vreven T, Janin J, Weng Z: Protein-protein docking benchmark version 4.0. / Proteins 2010, 78:3111-114. CrossRef
    23. Wang G, Dunbrack RL: PISCES: a protein sequence culling server. / Bioinformatics 2003, 19:1589-591. CrossRef
    24. Thiruv B, Quon G, Saldanha S, Steipe B: Nh3D: A reference dataset of non-homologous protein structures. / BMC Structural Biology 2005, 5:12. CrossRef
    25. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H: The IntAct molecular interaction database in 2012. / Nucleic Acids Research 2011, 2011:2011.
    26. Ritchie DW, Venkatraman V: Ultra-fast FFT protein docking on graphics processors. / Bioinformatics 2010, 26:2398-405. CrossRef
    27. Hubbard SJ, Thornton JM: / NACCESS. 1st edition. University College, London; 2001.
    28. Jones S, Thornton JM: Analysis of protein-protein interaction sites using surface patches. / Journal of Molecular Biology 1997, 272:121-32. CrossRef
    29. Nicola G, Vakser IA: A simple shape characteristic of proteinprotein recognition. / Bioinformatics 2007, 23:789-92. CrossRef
    30. R Development Core Team: / R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2011.
    31. Franz C: cramer. / Multivariate nonparametric Cramer-Test for the two-sample-problem 2006.
    32. Baringhaus L, Franz C: On a new multivariate two-sample test. / Journal of Multivariate Analysis 2004, 88:190-06. CrossRef
    33. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. / Series B (Methodological) 1995, 57:289-00.
    34. Acock AC, Gordon R: Stavig: A Measure of Association for Nonparametric Statistics. / Social Forces 1979, 57:1381-386.
    35. DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. / Biometrics 1988, 44:837-45. CrossRef
    36. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M: pROC: an open-source package for R and S-?to analyze and compare ROC curves. / BMC Bioinformatics 2011, 12:77. CrossRef
    37. Segura J, Jones P, Fernandez-Fuentes N: Improving the prediction of protein binding sites by combining heterogeneous data and Voronoi Diagrams. / BMC Bioinformatics 2011, 12:352. CrossRef
    38. Engelen S, Trojan LA, Sacquin-Mora S, Lavery R, Carbone A: Joint Evolutionary Trees: A Large-Scale Method To Predict Protein Interfaces Based on Sequence Sampling. / PLoS Comput Biol 2009, 5:e1000267. CrossRef
    39. Levy ED: PiQSi: Protein Quaternary Structure Investigation. / Structure 2007, 15:1364-367. CrossRef
    40. The PyMOL molecular graphics system: / San Carlos. DeLano Scientific, CA, USA; 2002.
    41. Lang HLE, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, Hjorth P, Sondergaard L, Svejgaard A, Wucherpfennig K, Stuart DI, Bell JI, Jones EY, Fugger L: A functional and structural basis for TCR cross-reactivity in multiple sclerosis. / Nat Immunol 2002, 3:940-43. CrossRef
    42. Sundberg EJ, Sawicki MW, Southwood S, Andersen PS, Sette A, Mariuzza RA: Minor structural changes in a mutated human melanoma antigen correspond to dramatically enhanced stimulation of a CD4+ tumor-infiltrating lymphocyte line. / J. Mol. Biol 2002, 319:449-61. CrossRef
    43. Simader H, Hothorn M, Suck D: Structures of the interacting domains from yeast glutamyl-tRNA synthetase and tRNA-aminoacylation and nuclear-export cofactor Arc1p reveal a novel function for an old fold. / Acta Crystallographica Section D Biological Crystallography 2006, 62:1510-519. CrossRef
    44. Simader H, Hothorn M, K?hler C, Basquin J, Simos G, Suck D: Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes. / Nucleic Acids Research 2006, 34:3968-979. CrossRef
    45. Bella J, Kolatkar PR, Marlor CW, Greve JM, Rossmann MG: The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. / Proc. Natl. Acad. Sci. U.S.A 1998, 95:4140-145. CrossRef
    46. Shimaoka M, Xiao T, Liu J-H, Yang Y, Dong Y, Jun C-D, McCormack A, Zhang R, Joachimiak A, Takagi J, Wang J-H, Springer TA: Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. / Cell 2003, 112:99-11. CrossRef
    47. Stroupe C, Brunger AT: Crystal structures of a Rab protein in its inactive and active conformations. / J. Mol. Biol 2000, 304:585-98. CrossRef
    48. Ignatev A, Kravchenko S, Rak A, Goody RS, Pylypenko O: A Structural Model of the GDP Dissociation Inhibitor Rab Membrane Extraction Mechanism. / Journal of Biological Chemistry 2008, 283:18377-8384. CrossRef
    49. Ko TP, Liao CC, Ku WY, Chak KF, Yuan HS: The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. / Structure 1999, 7:91-02. CrossRef
    50. Huang H, Yuan HS: The conserved asparagine in the HNH motif serves an important structural role in metal finger endonucleases. / J. Mol. Biol. 2007, 368:812-21. CrossRef
    51. Hsieh SY, Ko TP, Tseng MY, Ku W, Chak KF, Yuan HS: A novel role of ImmE7 in the autoregulatory expression of the ColE7 operon and identification of possible RNase active sites in the crystal structure of dimeric ImmE7. / EMBO J 1997, 16:1444-454. CrossRef
    52. Banfield MJ, Barker JJ, Perry AC, Brady RL: Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. / Structure 1998, 6:1245-254. CrossRef
    53. Ren L, Wenglowsky S, Miknis G, Rast B, Buckmelter AJ, Ely RJ, Schlachter S, Laird ER, Randolph N, Callejo M, Martinson M, Galbraith S, Brandhuber BJ, Vigers G, Morales T, Voegtli WC, Lyssikatos J: Non-oxime inhibitors of B-Raf(V600E) kinase. / Bioorg. Med. Chem. Lett 2011, 21:1243-247. CrossRef
    54. Iverson C, Larson G, Lai C, Yeh L-T, Dadson C, Weingarten P, Appleby T, Vo T, Maderna A, Vernier J-M, Hamatake R, Miner JN, Quart B: RDEA119/BAY 869766: a potent, selective, allosteric inhibitor of MEK1/2 for the treatment of cancer. / Cancer Res 2009, 69:6839-847. CrossRef
    55. Kinoshita T, Yoshida I, Nakae S, Okita K, Gouda M, Matsubara M, Yokota K, Ishiguro H, Tada T: Crystal structure of human mono-phosphorylated ERK1 at Tyr204. / Biochem. Biophys. Res. Commun 2008, 377:1123-127. CrossRef
    56. Brown K, Vial SCM, Dedi N, Long JM, Dunster NJ, Cheetham GMT: Structural Basis for the Interaction of TAK1 Kinase with its Activating Protein TAB1. / Journal of Molecular Biology 2005, 354:1013-020. CrossRef
    57. D’Alise AM, Amabile G, Iovino M, Di Giorgio FP, Bartiromo M, Sessa F, Villa F, Musacchio A, Cortese R: Reversine, a novel Aurora kinases inhibitor, inhibits colony formation of human acute myeloid leukemia cells. / Molecular Cancer Therapeutics 2008, 7:1140-149. CrossRef
    58. Grodsky N, Li Y, Bouzida D, Love R, Jensen J, Nodes B, Nonomiya J, Grant S: Structure of the catalytic domain of human protein kinase C beta II complexed with a bisindolylmaleimide inhibitor. / Biochemistry 2006, 45:13970-3981. CrossRef
    59. Serre L, Vallée B, Bureaud N, Schoentgen F, Zelwer C: Crystal structure of the phosphatidylethanolamine-binding protein from bovine brain: a novel structural class of phospholipid-binding proteins. / Structure 1998, 6:1255-265. CrossRef
    60. Mattos C, Ringe D: Locating and characterizing binding sites on proteins. / Nature Biotechnology 1996, 14:595-99. CrossRef
    61. Brenke R, Kozakov D, Chuang G-Y, Beglov D, Hall D, Landon MR, Mattos C, Vajda S: Fragment-Based Identification of Druggable ‘hot Spots-of Proteins Using Fourier Domain Correlation Techniques. / Bioinformatics 2009, 25:621-27. CrossRef
    62. Moreira IS, Fernandes PA, Ramos MJ: Hot spots-A review of the protein-protein interface determinant amino-acid residues. / Proteins 2007, 68:803-12. CrossRef
    63. Bogan AA, Thorn KS: Anatomy of hot spots in protein interfaces. / Journal of Molecular Biology 1998, 280:1-. CrossRef
    64. Bonsor DA, Sundberg EJ: Dissecting Protein???Protein Interactions Using Directed Evolution. / Biochemistry 2011, 50:2394-402. CrossRef
  • 作者单位:Juliette Martin (1)
    Richard Lavery (1)

    1. Université Lyon 1; CNRS, UMR 5086; Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, 7 passage du, Vercors, F-69367, France
  • ISSN:2046-1682
文摘
Background Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. Results In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking using PEBP (Phosphatidylethanolamine binding protein), a kinase inhibitor with multiple partners. Conclusions An approach using arbitrary docking, and based solely on physical properties, can successfully identify biologically pertinent protein interfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700