Differences Between Sensitivity of Mycobiont and Photobiont of Cladonia sp. Lichens to Different Types of Nitrogen Exposure
详细信息    查看全文
  • 作者:Ivana Maslaňáková ; Ivana Bi?ová ; Michal Goga ; Michal Kuchár…
  • 关键词:Cladonia sp. ; Nitrogen ; Photobiont ; Mycobiont
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:226
  • 期:8
  • 全文大小:1,310 KB
  • 参考文献:Ba?kor, M., Ková?ik, J., Dzubaj, A., & Ba?korová, M. (2009). Physiological comparison of copper toxicity in the lichens Peltigera rufescens (Weis) Humb. and Cladina arbuscula subsp. mitis (Sandst.) Ruoss. Plant Growth Regulation, 58, 279-86. doi:10.-007/?s10725-009-9376-x .View Article
    Bradford, M. M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72, 248-54. doi:10.-006/?abio.-976.-999 .View Article
    Dahlman, L., N?sholm, T., & Palmqwist, K. (2001). Growth, nitrogen uptake, and resource allocation in the two tripartire lichens Nephroma arctucim and Peltigera aphthosa during nitrogen stress. New Phytologist, 153, 307-15. doi:10.-046/?j.-028-646X.-001.-0321.?x .View Article
    Frati, L., Brunialti, G., Gaudino, S., Pati, A., Rosamilia, S., & Loppi, S. (2011). Accumulation of nitrogen and changes in assimilation pigments of lichens transplanted in an agricultural area. Environmental Monitoring and Assessment, 178, 19-4. doi:10.-007/?s1066-010-1667-1 .View Article
    Fremstad, E., Paal, J., & Mols, T. (2005). Impacts of increased nitrogen supply on Norwegian lichen-rich alpine communities: a 10-year experiment. Journal of Ecology, 93(3), 471-81. doi:10.-111/?j.-365-2745.-005.-0995.?x .View Article
    Hauck, M. (2010). Ammnonium and nitrate tolerance in lichens. Environmental Pollution, 158, 1127-133. doi:10.-016/?j.?envpol.-009.-2.-36 .View Article
    Hauck, M., Helms, G., & Friedl, T. (2007). Photobiont selectivity in the epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides. The Lichenologist, 39, 195-04. doi:10.-017/?S002428290700663- .View Article
    Makkonen, S., Hurri, R. S. K., & Hyv?rinen, M. (2007). Differential responses of lichen symbionts to enhanced nitrogen and phosphorus availability: an experiment with Cladina stellaris. Annals of Botany, 99, 877-84. doi:10.-093/?aob/?mcm042 .View Article
    Munzi, S., Pirintsos, S. A., & Loppi, S. (2009a). Chlorophyll degradation and inhibition of polyamine biosynthesis in the lichen Xanthoria parietina under nitrogen stress. Ecotoxicology and Environmental Safety, 72, 281-85. doi:10.-016/?j.?ecoenv.-008.-4.-13 .View Article
    Munzi, S., Pisani, T., & Loppi, S. (2009b). The integrity of lichen cell membrane as a suitable parameter for monitoring biological effects of acute nitrogen pollution. Ecotoxicology and Environmental Safety, 72, 2009-012. doi:10.-016/?j.?ecoenv.-009.-5.-05 .View Article
    Munzi, S., Pisani, T., Paoli, L., & Loppi, S. (2010). Time- and dose-dependency of the effects of nitrogen pollution on lichens. Ecotoxicology and Environmental Safety, 73, 1785-788. doi:10.-016/?j.?ecoenv.-010.-7.-42 .View Article
    Nybakken, L., Johansson, O., & Palmqwist, K. (2009). Defensive compound concentration in boreal lichens in response to simulated nitrogen deposition. Global Change Biology, 15, 2247-260. doi:10.-111/?j.-365-2486.-009.-1853.?x .View Article
    Ochoa-Hueso, R., & Manrique, E. (2011). Effects of nitrogen deposition and soil fertility on cover and physiology of Cladonia foliacea (Huds.) Willd., a lichen of biological soil crusts from Mediterranean Spain. Environmental Pollution, 159, 449-57. doi:10.-016/?j.?envpol.-010.-0.-21 .View Article
    Paoli, L., Pirintsos, S. A., Kotzabasis, K., Pisani, T., Navakoudis, E., & Loppi, S. (2010). Effects of ammonia from livestock farming on lichen photosynthesis. Environmental Pollution, 158(6), 2258-265. doi:10.-016/?j.?envpol.-010.-2.-08 .View Article
    Pinho, P., Dias, T., Cruz, C., Tang, Y. S., Sutton, M. A., Martins- Lou??o, M.-A., Máguas, C., & Branquinho, C. (2011). Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. Journal of Applied Ecology, 48, 1107-116. doi:10.-111/?j.-365-2664.-011.-2033.?x .View Article
    Pirintsos, S. A., Munzi, S., Loppi, S., & Kotzabasis, K. (2009). Do polyamines alter the sensitivity of lichens to nitrogen stress? Ecotoxicology and Environmental Safety, 72, 1331-336. doi:10.-016/?j.?ecoenv.-009.-3.-01 .View Article
    Ronen, R., & Galun, M. (1984). Pigment extraction from lichens with dimethylsuloxide (DMSO) and estimation of chlorophyll degradation. Environmental and Experimental Botany, 24, 239-45.View Article
    Skaloud, P., & Peksa, O. (2010). Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics and Evolution, 54, 36-6. doi:10.-016/?j.?ympev.-009.-9.-35 .View Article
    Stevens, C. J., Smart, S. M., Henrys, P. A., Maskell, L. C., Crowe, A., Simkin, J., Cheffings, C. M., Whitfield, C., Gowing, D. J. G., Rowe, E. C., Dore, A. J., & Emmett, B. A. (2012). Terricolous lichens as indicators of nitrogen deposition: evidence from national records.
  • 作者单位:Ivana Maslaňáková (1)
    Ivana Bi?ová (1)
    Michal Goga (1)
    Michal Kuchár (1)
    Martin Ba?kor (1)

    1. Department of Botany, Institute of Biology and Ecology, Faculty of Science, ?afárik University, Mánesová 23, 041 67, Ko?ice, Slovak Republic
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
Lichens absorb water, gases, dissolved substances, and especially pollutants by the entire surface, and they are considered to be the indicators of air quality. In our experiment, a sensitivity of Cladonia arbuscula subsp. mitis and Cladonia furcata lichens with the same photobiont Trebouxia was tested to nitrogen excess through a sensitivity of both the photobiont and mycobiont. Lichen ecophysiological parameters like chlorophyll a fluorescence, chlorophyll a integrity, the content of photosynthetic pigments, ergosterol, soluble proteins, thiobarbituric acid reactive substances, and secondary compounds were measured during two experiments that differed in time of nitrogen exposure. In the short-term experiment, also higher nitrogen concentrations were used to evaluate the dependence of different nitrogen concentrations. In the short-term experiment, lichens were soaked at the different solutions of ammonium nitrate (NH4NO3) for describing an immediate effect of range of NH4NO3 concentrations. In the long-term experiment, lichens were sprayed with low NH4NO3 concentrations for 3?months for evaluating the effect of naturally occurring low nitrogen concentrations. Results showed that lichens responded differently in spite of having the same photobiont. The mycobiont of C. arbuscula subsp. mitis was more sensitive than mycobiont of C. furcata. In higher nitrogen concentrations, the photobiont of C. furcata was more sensitive than C. arbuscula subsp. mitis photobiont. Both lichens exhibited signs of damage; therefore, we conclude that they are sensitive to nitrogen excess, while C. arbuscula subsp. mitis is more sensitive species. The secondary compound content did not change in neither of lichen species. Cladonia sp. response to nitrogen excess depends on length and nitrogen dose exposure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700