Surface-Initiated Atom Transfer Radical Polymerization
详细信息    查看全文
  • 关键词:Controlled radical polymerization ; Elementary reactions ; Mechanism ; Grafting density ; Surface geometry
  • 刊名:Advances in Polymer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:270
  • 期:1
  • 页码:29-76
  • 全文大小:1,984 KB
  • 参考文献:1.Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32(1):93–146
    2.Matyjaszewski K, Davis TP (2002) Handbook of radical polymerization. Wiley-Interscience, Hoboken
    3.Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101(9):2921–2990
    4.Wang JS, Matyjaszewski K (1995) Controlled living radical polymerization – atom-transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117(20):5614–5615
    5.Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101:3689
    6.Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1(4):276–288
    7.di Lena F, Matyjaszewski K (2010) Transition metal catalysts for controlled radical polymerization. Prog Polym Sci 35(8):959–1021
    8.Shen Y, Tang H, Ding S (2004) Catalyst separation in atom transfer radical polymerization. Prog Polym Sci 29(10):1053–1078
    9.Tsarevsky NV, Matyjaszewski K (2007) “Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally-friendly polymeric materials. Chem Rev 107:2270–2299
    10.Jakubowski W, Matyjaszewski K (2006) Activators regenerated by electron transfer for atom-transfer radical polymerization of (meth)acrylates and related block copolymers. Angew Chem Int Ed Engl 45(27):4482–4486
    11.Matyjaszewski K, Jakubowski W, Min K, Tang W, Huang JY, Braunecker WA, Tsarevsky NV (2006) Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents. Proc Natl Acad Sci USA 103(42):15309–15314
    12.Konkolewicz D, Krys P, Gois JR, Mendonca PV, Zhong M, Wang Y, Gennaro A, Isse AA, Fantin M, Matyjaszewski K (2014) Aqueous RDRP in the presence of Cu0: the exceptional activity of CuI confirms the SARA ATRP mechanism. Macromolecules 47(2):560–570
    13.Konkolewicz D, Wang Y, Zhong M, Krys P, Isse AA, Gennaro A, Matyjaszewski K (2013) Reversible-deactivation radical polymerization in the presence of metallic copper. A critical assessment of the SARA ATRP and SET-LRP mechanisms. Macromolecules 46(22):8749–8772
    14.Konkolewicz D, Wang Y, Krys P, Zhong M, Isse AA, Gennaro A, Matyjaszewski K (2014) SARA ATRP or SET-LRP. End of controversy? Polym Chem 5(15):4396–4417
    15.Konkolewicz D, Schroder K, Buback J, Bernhard S, Matyjaszewski K (2012) Visible light and sunlight photoinduced ATRP with ppm of Cu catalyst. ACS Macro Lett 1(10):1219–1223
    16.Ribelli TG, Konkolewicz D, Bernhard S, Matyjaszewski K (2014) How are radicals (re)generated in photochemical ATRP? J Am Chem Soc 136:13303–13312
    17.Fors BP, Hawker CJ (2012) Control of a living radical polymerization of methacrylates by light. Angew Chem Int Ed 51:8850–8853
    18.Mosnáček J, Ilčíková M (2012) Photochemically mediated atom transfer radical polymerization of methyl methacrylate using ppm amounts of catalyst. Macromolecules 45(15):5859–5865
    19.Tasdelen MA, Uygun M, Yagci Y (2011) Photoinduced controlled radical polymerization. Macromol Rapid Commun 32(1):58–62
    20.Magenau AJD, Strandwitz NC, Gennaro A, Matyjaszewski K (2011) Electrochemically mediated atom transfer radical polymerization. Science 332(6025):81–84
    21.Bortolamei N, Isse AA, Magenau AJD, Gennaro A, Matyjaszewski K (2011) Controlled aqueous atom transfer radical polymerization with electrochemical generation of the active catalyst. Angew Chem Int Ed 50(48):11391–11394
    22.Magenau AJD, Bortolamei N, Frick E, Park S, Gennaro A, Matyjaszewski K (2013) Investigation of electrochemically mediated atom transfer radical polymerization. Macromolecules 46(11):4346–4353
    23.Matyjaszewski K, Tsarevsky NV (2014) Macromolecular engineering by atom transfer radical polymerization. J Am Chem Soc 136:6513–6533
    24.Matyjaszewski K (2012) Atom transfer radical polymerization: from mechanisms to applications. Isr J Chem 52(3–4):206–220
    25.Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45(10):4015–4039
    26.Goto A, Fukuda T (2004) Kinetics of living radical polymerization. Prog Polym Sci 29(4):329–385
    27.Tang W, Matyjaszewski K (2007) Effects of initiator structure on activation rate constants in ATRP. Macromolecules 40(6):1858–1863
    28.Tang W, Kwak Y, Braunecker W, Tsarevsky NV, Coote ML, Matyjaszewski K (2008) Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. J Am Chem Soc 130(32):10702–10713
    29.Tang W, Matyjaszewski K (2006) Effect of ligand structure on activation rate constants in ATRP. Macromolecules 39(15):4953–4959
    30.Braunecker WA, Tsarevsky NV, Gennaro A, Matyjaszewski K (2009) Thermodynamic components of the atom transfer radical polymerization equilibrium: quantifying solvent effects. Macromolecules 42(17):6348–6360
    31.Seeliger F, Matyjaszewski K (2009) Temperature effect on activation rate constants in ATRP: new mechanistic insights into the activation process. Macromolecules 42(16):6050–6055
    32.Kwiatkowski P, Jurczak J, Pietrasik J, Jakubowski W, Mueller L, Matyjaszewski K (2008) High molecular weight polymethacrylates by AGET ATRP under high pressure. Macromolecules 41(4):1067–1069
    33.Pyun J, Matyjaszewski K (2001) Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living” radical polymerization. Chem Mater 13(10):3436–3448
    34.Hui CM, Pietrasik J, Schmitt M, Mahoney C, Choi J, Bockstaller MR, Matyjaszewski K (2014) Surface-initiated polymerization as an enabling tool for multifunctional (nano-)engineered hybrid materials. Chem Mater 26(1):745–762
    35.de Gennes PG (1987) Polymers at an interface: a simplified view. Adv Colloid Interface Sci 27(3–4):189–209
    36.Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T (2006) Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. In: Jordan R (ed) Surface-initiated polymerization I, vol 197. Springer, Berlin/Heidelberg, pp 1–45
    37.Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021
    38.Golas PL, Matyjaszewski K (2010) Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem Soc Rev 39(4):1338–1354
    39.Walther A, Müller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113(7):5194–5261
    40.Yuan J, Xu Y, Walther A, Bolisetty S, Schumacher M, Schmalz H, Ballauff M, Müller AHE (2008) Water-soluble organo-silica hybrid nanowires. Nat Mater 7:718–722
    41.Djalali R, Hugenberg N, Fischer K, Schmidt M (1999) Amphipolar core-shell cylindrical brushes. Macromol Rapid Commun 20(8):444–449
    42.Djalali R, Li S-Y, Schmidt M (2002) Amphipolar core − shell cylindrical brushes as templates for the formation of gold clusters and nanowires. Macromolecules 35(11):4282–4288
    43.Lee H, Jakubowski W, Matyjaszewski K, Yu S, Sheiko SS (2006) Cylindrical core-shell brushes prepared by a combination of ROP and ATRP. Macromolecules 39(15):4983–4989
    44.Lee H-I, Pietrasik J, Sheiko SS, Matyjaszewski K (2010) Stimuli-responsive molecular brushes. Prog Polym Sci 35(1–2):24–44
    45.Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33(7):759–785
    46.Gao H, Ohno S, Matyjaszewski K (2006) Low polydispersity star polymers via cross-linking macromonomers by ATRP. J Am Chem Soc 128(47):15111–15113
    47.Gao H, Matyjaszewski K (2009) Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog Polym Sci 34(4):317–350
    48.Müllner M, Lunkenbein T, Schieder M, Gröschel AH, Miyajima N, Förtsch M, Breu J, Caruso F, Müller AHE (2012) Template-directed mild synthesis of anatase hybrid nanotubes within cylindrical core–shell–corona polymer brushes. Macromolecules 45(17):6981–6988
    49.Müllner M, Lunkenbein T, Miyajima N, Breu J, Müller AHE (2012) A facile polymer templating route toward high-aspect-ratio crystalline titania nanostructures. Small 8(17):2636–2640
    50.Connal LA, Franks GV, Qiao GG (2010) Photochromic, metal-absorbing honeycomb structures. Langmuir 26(13):10397–10400
    51.Pang X, Zhao L, Han W, Xin X, Lin Z (2013) A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat Nano 8(6):426–431
    52.Kruk M, Dufour B, Celer EB, Kowalewski T, Jaroniec M, Matyjaszewski K (2008) Grafting monodisperse polymer chains from concave surfaces of ordered mesoporous silicas. Macromolecules 41(22):8584–8591
    53.Mori H, Seng DC, Zhang M, Mueller AHE (2002) Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces. Langmuir 18(9):3682–3693
    54.Dong H, Zhu M, Yoon JA, Gao H, Jin R, Matyjaszewski K (2008) One-pot synthesis of robust core/shell gold nanoparticles. J Am Chem Soc 130(39):12852–12853
    55.Ye P, Dong H, Zhong M, Matyjaszewski K (2011) Synthesis of binary polymer brushes via two-step reverse atom transfer radical polymerization. Macromolecules 44(7):2253–2260
    56.Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29(7):635–698
    57.Julthongpiput D, Lin Y-H, Teng J, Zubarev ER, Tsukruk VV (2003) Y-shaped polymer brushes: nanoscale switchable surfaces. Langmuir 19(19):7832–7836
    58.Zhao B, He T (2003) Synthesis of well-defined mixed poly(methyl methacrylate)/polystyrene brushes from an asymmetric difunctional initiator-terminated self-assembled monolayer. Macromolecules 36(23):8599–8602
    59.Li Y, Tao P, Viswanath A, Benicewicz BC, Schadler LS (2012) Bimodal surface ligand engineering: the key to tunable nanocomposites. Langmuir 29(4):1211–1220
    60.Chen R, Feng W, Zhu S, Botton G, Ong B, Wu Y (2006) Surface-initiated atom transfer radical polymerization grafting of poly(2,2,2-trifluoroethyl methacrylate) from flat silicon wafer surfaces. J Polym Sci A Polym Chem 44(3):1252–1262
    61.Feng W, Chen R, Brash JL, Zhu S (2005) Surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate: effect of solvent on graft density. Macromol Rapid Commun 26(17):1383–1388
    62.Ell JR, Mulder DE, Faller R, Patten TE, Kuhl TL (2009) Structural determination of high density, ATRP grown polystyrene brushes by neutron reflectivity. Macromolecules 42(24):9523–9527
    63.Tomlinson MR, Efimenko K, Genzer J (2006) Study of kinetics and macroinitiator efficiency in surface-initiated atom-transfer radical polymerization. Macromolecules 39(26):9049–9056
    64.Wang S, Zhu Y (2009) Facile method to prepare smooth and homogeneous polymer brush surfaces of varied brush thickness and grafting density. Langmuir 25(23):13448–13455
    65.Jones DM, Brown AA, Huck WTS (2002) Surface-initiated polymerizations in aqueous media: effect of initiator density. Langmuir 18(4):1265–1269
    66.Bao Z, Bruening ML, Baker GL (2006) Control of the density of polymer brushes prepared by surface-initiated atom transfer radical polymerization. Macromolecules 39(16):5251–5258
    67.Jia H, Wildes A, Titmuss S (2012) Structure of pH-responsive polymer brushes grown at the gold–water interface: dependence on grafting density and temperature. Macromolecules 45(1):305–312
    68.Behling RE, Williams BA, Staade BL, Wolf LM, Cochran EW (2009) Influence of graft density on kinetics of surface-initiated ATRP of polystyrene from montmorillonite. Macromolecules 42(6):1867–1872
    69.Lego B, François M, Skene WG, Giasson S (2009) Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length. Langmuir 25(9):5313–5321
    70.Wu T, Efimenko K, Vlček P, Šubr V, Genzer J (2003) Formation and properties of anchored polymers with a gradual variation of grafting densities on flat substrates. Macromolecules 36(7):2448–2453
    71.Lilge I, Steuber M, Tranchida D, Sperotto E, Schönherr H (2013) Tailored (Bio)interfaces via surface initiated polymerization: control of grafting density and new responsive diblock copolymer brushes. Macromol Symp 328(1):64–72
    72.Coad BR, Styan KE, Meagher L (2014) One step ATRP initiator immobilization on surfaces leading to gradient-grafted polymer brushes. ACS Appl Mater Interfaces 6(10):7782–7789
    73.Ohno K, Morinaga T, Koh K, Tsujii Y, Fukuda T (2005) Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules 38(6):2137–2142
    74.Huang C, Tassone T, Woodberry K, Sunday D, Green DL (2009) Impact of ATRP initiator spacer length on grafting poly(methyl methacrylate) from silica nanoparticles. Langmuir 25(23):13351–13360
    75.Sunday D, Curras-Medina S, Green DL (2010) Impact of initiator spacer length on grafting polystyrene from silica nanoparticles. Macromolecules 43(11):4871–4878
    76.Pietrasik J, Hui CM, Chaladaj W, Dong H, Choi J, Jurczak J, Bockstaller MR, Matyjaszewski K (2011) Silica-polymethacrylate hybrid particles synthesized using high-pressure atom transfer radical polymerization. Macromol Rapid Commun 32(3):295–301
    77.Pyun J, Jia S, Kowalewski T, Patterson GD, Matyjaszewski K (2003) Synthesis and characterization of organic/inorganic hybrid nanoparticles: kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films. Macromolecules 36(14):5094–5104
    78.El Harrak A, Carrot G, Oberdisse J, Eychenne-Baron C, Boué F (2004) Surface−atom transfer radical polymerization from silica nanoparticles with controlled colloidal stability. Macromolecules 37(17):6376–6384
    79.Tchoul MN, Dalton M, Tan L-S, Dong H, Hui CM, Matyjaszewski K, Vaia RA (2012) Enhancing the fraction of grafted polystyrene on silica hybrid nanoparticles. Polymer 53(1):79–86
    80.Averick SE, Bazewicz CG, Woodman BF, Simakova A, Mehl RA, Matyjaszewski K (2013) Protein–polymer hybrids: conducting ARGET ATRP from a genetically encoded cleavable ATRP initiator. Eur Polym J 49(10):2919–2924
    81.Sugnaux C, Lavanant L, Klok H-A (2013) Aqueous fabrication of pH-gated, polymer
    ush-modified alumina hybrid membranes. Langmuir 29(24):7325–7333
    82.Cheng N, Azzaroni O, Moya S, Huck WTS (2006) The effect of [CuI]/[CuII] ratio on the kinetics and conformation of polyelectrolyte brushes by atom transfer radical polymerization. Macromol Rapid Commun 27(19):1632–1636
    83.Kim J-B, Bruening ML, Baker GL (2000) Surface-initiated atom transfer radical polymerization on gold at ambient temperature. J Am Chem Soc 122(31):7616–7617
    84.Shah RR, Merreceyes D, Husemann M, Rees I, Abbott NL, Hawker CJ, Hedrick JL (2000) Using atom transfer radical polymerization to amplify monolayers of initiators patterned by microcontact printing into polymer brushes for pattern transfer. Macromolecules 33(2):597–605
    85.Hou J, Shi Q, Stagnaro P, Ye W, Jin J, Conzatti L, Yin J (2013) Aqueous-based immobilization of initiator and surface-initiated ATRP to construct hemocompatible surface of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer. Colloids Surf B Biointerfaces 111:333–341
    86.Chakkalakal GL, Alexandre M, Abetz C, Boschetti-de-Fierro A, Abetz V (2012) Surface-initiated controlled radical polymerization from silica nanoparticles with high initiator density. Macromol Chem Phys 213(5):513–528
    87.Bombalski L, Min K, Dong H, Tang C, Matyjaszewski K (2007) Preparation of well-defined hybrid materials by ATRP in miniemulsion. Macromolecules 40(21):7429–7432
    88.Audouin F, Blas H, Pasetto P, Beaunier P, Boissière C, Sanchez C, Save M, Charleux B (2008) Structured hybrid nanoparticles via surface-initiated ATRP of methyl methacrylate from ordered mesoporous silica. Macromol Rapid Commun 29(11):914–921
    89.Pasetto P, Blas H, Audouin F, Boissière C, Sanchez C, Save M, Charleux B (2009) Mechanistic insight into surface-initiated polymerization of methyl methacrylate and styrene via ATRP from ordered mesoporous silica particles. Macromolecules 42(16):5983–5995
    90.Liu H, Zhu Y-L, Zhang J, Lu Z-Y, Sun Z-Y (2012) Influence of grafting surface curvature on chain polydispersity and molecular weight in concave surface-initiated polymerization. ACS Macro Lett 1(11):1249–1253
    91.Gao X, Feng W, Zhu S, Sheardown H, Brash JL (2010) Kinetic modeling of surface-initiated atom transfer radical polymerization. Macromol React Eng 4(3–4):235–250
    92.Turgman-Cohen S, Genzer J (2011) Simultaneous bulk- and surface-initiated controlled radical polymerization from planar substrates. J Am Chem Soc 133(44):17567–17569
    93.Turgman-Cohen S, Genzer J (2012) Computer simulation of concurrent bulk- and surface-initiated living polymerization. Macromolecules 45(4):2128–2137
    94.Schneider D, Schmitt M, Hui CM, Sainidou R, Rembert P, Matyjaszewski K, Bockstaller MR, Fytas G (2014) Role of polymer graft architecture on the acoustic eigenmode formation in densely polymer-tethered colloidal particles. ACS Macro Lett 3(10):1059–1063
    95.Mastan E, Xi L, Zhu S (2015) What limits the chain growth from flat surfaces in surface-initiated ATRP: propagation, termination or both? Macromol Theor Simulat 24(2):89–99. doi:10.1002/mats.201400085
    96.Huang W, Kim J-B, Bruening ML, Baker GL (2002) Functionalization of surfaces by water-accelerated atom-transfer radical polymerization of hydroxyethyl methacrylate and subsequent derivatization. Macromolecules 35(4):1175–1179
    97.Dunderdale GJ, Urata C, Miranda DF, Hozumi A (2014) Large-scale and environmentally friendly synthesis of pH-responsive oil-repellent polymer brush surfaces under ambient conditions. ACS Appl Mater Interfaces 6(15):11864–11868
    98.Jain P, Dai J, Baker GL, Bruening ML (2008) Rapid synthesis of functional polymer brushes by surface-initiated atom transfer radical polymerization of an acidic monomer. Macromolecules 41(22):8413–8417
    99.Matyjaszewski K, Miller PJ, Shukla N, Immaraporn B, Gelman A, Luokala BB, Siclovan TM, Kickelbick G, Vallant T, Hoffmann H, Pakula T (1999) Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules 32(26):8716–8724
    100.Feng W, Brash J, Zhu S (2004) Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces. J Polym Sci A Polym Chem 42(12):2931–2942
    101.Xiao D, Wirth MJ (2002) Kinetics of surface-initiated atom transfer radical polymerization of acrylamide on silica. Macromolecules 35(8):2919–2925
    102.Zhou D, Gao X, Wang W-J, Zhu S (2012) Termination of surface radicals and kinetic modeling of ATRP grafting from flat surfaces by addition of deactivator. Macromolecules 45(3):1198–1207
    103.Kim J-B, Huang W, Miller MD, Baker GL, Bruening ML (2003) Kinetics of surface-initiated atom transfer radical polymerization. J Polym Sci A Polym Chem 41(3):386–394
    104.Wang Y, Soerensen N, Zhong M, Schroeder H, Buback M, Matyjaszewski K (2013) Improving the “livingness” of ATRP by reducing Cu catalyst concentration. Macromolecules 46(3):683–691
    105.Koylu D, Carter KR (2009) Stimuli-responsive surfaces utilizing cleavable polymer brush layers. Macromolecules 42(22):8655–8660
    106.Yamamoto K, Miwa Y, Tanaka H, Sakaguchi M, Shimada S (2002) Living radical graft polymerization of methyl methacrylate to polyethylene film with typical and reverse atom transfer radical polymerization. J Polym Sci A Polym Chem 40(20):3350–3359
    107.Kang C, Crockett RM, Spencer ND (2014) Molecular-weight determination of polymer brushes generated by SI-ATRP on flat surfaces. Macromolecules 47(1):269–275
    108.Devaux C, Chapel JP, Beyou E, Chaumont P (2002) Controlled structure and density of “living” polystyrene brushes on flat silica surfaces. Eur Phys J E 7:345–352
    109.Miwa Y, Yamamoto K, Sakaguchi M, Shimada S (2001) Well-defined polystyrene grafted to polypropylene backbone by “living” radical polymerization with TEMPO. Macromolecules 34(7):2089–2094
    110.Yamago S, Yahata Y, Nakanishi K, Konishi S, Kayahara E, Nomura A, Goto A, Tsujii Y (2013) Synthesis of concentrated polymer brushes via surface-initiated organotellurium-mediated living radical polymerization. Macromolecules 46(17):6777–6785
    111.Ohno K, Akashi T, Huang Y, Tsujii Y (2010) Surface-initiated living radical polymerization from narrowly size-distributed silica nanoparticles of diameters less than 100 nm. Macromolecules 43(21):8805–8812
    112.Ohno K, Tabata H, Tsujii Y (2013) Surface-initiated living radical polymerization from silica particles functionalized with poly(ethylene glycol)-carrying initiator. Colloid Polym Sci 291(1):127–135
    113.Gorman CB, Petrie RJ, Genzer J (2008) Effect of substrate geometry on polymer molecular weight and polydispersity during surface-initiated polymerization. Macromolecules 41(13):4856–4865
    114.Fischer H (1997) The persistent radical effect in “living” radical polymerization. Macromolecules 30(19):5666–5672
    115.Matyjaszewski K (1997) Mechanistic and synthetic aspects of atom transfer radical polymerization. J Macromol Sci A Pure Appl Chem 34(10):1785–1801
    116.Fukuda T, Goto A (1997) Gel permeation chromatographic determination of activation rate constants in nitroxide-controlled free radical polymerization, 2. Analysis of evolution of polydispersities. Macromol Rapid Commun 18(8):683–688
    117.Ejaz M, Yamamoto S, Ohno K, Tsujii Y, Fukuda T (1998) Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the langmuir−blodgett and atom transfer radical polymerization techniques. Macromolecules 31(17):5934–5936
    118.Jeyaprakash JD, Samuel S, Dhamodharan R, Rühe J (2002) Polymer brushes via ATRP: role of activator and deactivator in the surface-initiated ATRP of styrene on planar substrates. Macromol Rapid Commun 23(4):277–281
    119.Chen R, Feng W, Zhu S, Botton G, Ong B, Wu Y (2006) Surface-initiated atom transfer radical polymerization of polyhedral oligomeric silsesquioxane (POSS) methacrylate from flat silicon wafer. Polymer 47(4):1119–1123
    120.Li B, Yu B, Huck WTS, Liu W, Zhou F (2013) Electrochemically mediated atom transfer radical polymerization on nonconducting substrates: controlled brush growth through catalyst diffusion. J Am Chem Soc 135(5):1708–1710
    121.Huang J, Pintauer T, Matyjaszewski K (2004) Effect of variation of [PMDETA]0/[Cu(I)Br]0 ratio on atom transfer radical polymerization ofn-butyl acrylate. J Polym Sci A Polym Chem 42(13):3285–3292
    122.Sharma R, Goyal A, Caruthers JM, Won Y-Y (2006) Inhibitive chain transfer to ligand in the ATRP of n-butyl acrylate. Macromolecules 39(14):4680–4689
    123.Yu Q, Zhang Y, Chen H, Wu Z, Huang H, Cheng C (2010) Protein adsorption on poly(N-isopropylacrylamide)-modified silicon surfaces: effects of grafted layer thickness and protein size. Colloids Surf B Biointerfaces 76(2):468–474
    124.Wang XJ, Bohn PW (2007) Spatiotemporally controlled formation of two-component counterpropagating lateral graft density gradients of mixed polymer brushes on planar Au surfaces. Adv Mater 19(4):515–520
    125.Xue C, Yonet-Tanyeri N, Brouette N, Sferrazza M, Braun PV, Leckband DE (2011) Protein adsorption on poly(N-isopropylacrylamide) brushes: dependence on grafting density and chain collapse. Langmuir 27(14):8810–8818
    126.Liu X, Ye Q, Yu B, Liang Y, Liu W, Zhou F (2010) Switching water droplet adhesion using responsive polymer brushes. Langmuir 26(14):12377–12382
    127.Hui CM, Dang A, Chen B, Yan J, Konkolewicz D, He H, Ferebee R, Bockstaller MR, Matyjaszewski K (2014) Effect of thermal self-initiation on the synthesis, composition, and properties of particle brush materials. Macromolecules 47(16):5501–5508
    128.Mu B, Shen R, Liu P (2009) Crosslinked polymeric nanocapsules from polymer brushes grafted silica nanoparticles via surface-initiated atom transfer radical polymerization. Colloids Surf B Biointerfaces 74(2):511–515
    129.Wu D, Hui CM, Dong H, Pietrasik J, He H, Ryu HJ, Li Z, Zhong M, Jaroniec M, Kowalewski T, Matyjaszewski K (2011) Nanonetwork-structured polystyrene and carbon materials with core-shell nanosphere network unit. Polym Preprints 52(2):693–694
    130.Yamamoto S, Ejaz M, Tsujii Y, Fukuda T (2000) Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 2. Effect of graft density. Macromolecules 33(15):5608–5612
    131.Liao W-P, Elliott IG, Faller R, Kuhl TL (2013) Normal and shear interactions between high grafting density polymer brushes grown by atom transfer radical polymerization. Soft Matter 9(24):5753–5761
    132.Xu FJ, Neoh KG, Kang ET (2009) Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog Polym Sci 34(8):719–761
    133.Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE (2014) Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev 114(21):10976–11026
    134.Jiang H, Xu F-J (2013) Biomolecule-functionalized polymer brushes. Chem Soc Rev 42(8):3394
    135.Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527
    136.Siegwart DJ, Oh JK, Matyjaszewski K (2012) ATRP in the design of functional materials for biomedical applications. Prog Polym Sci 37(1):18–37
    137.Yu K, Mei Y, Hadjesfandiari N, Kizhakkedathu JN (2014) Engineering biomaterials surfaces to modulate the host response. Colloids Surf B Biointerfaces 124:69–79
    138.Zhang L, Ning C, Zhou T, Liu X, Yeung KWK, Zhang T, Xu Z, Wang X, Wu S, Chu PK (2014) Polymeric nanoarchitectures on Ti-based implants for antibacterial applications. ACS Appl Mater Interfaces 6(20):17323–17345
    139.Feng W, Brash JL, Zhu S (2006) Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion. Biomaterials 27(6):847–855
    140.Feng W, Zhu S, Ishihara K, Brash JL (2005) Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir 21(13):5980–5987
    141.Gao X, Feng W, Zhu S, Sheardown H, Brash JL (2008) A facile method of forming nanoscale patterns on poly(ethylene glycol)-based surfaces by self-assembly of randomly grafted block copolymer brushes. Langmuir 24(15):8303–8308
    142.Gao X, Kučerka N, Nieh M-P, Katsaras J, Zhu S, Brash JL, Sheardown H (2009) Chain conformation of a new class of PEG-based thermoresponsive polymer brushes grafted on silicon as determined by neutron reflectometry. Langmuir 25(17):10271–10278
    143.Feng W, Zhu S, Brash JL (2005) Preparation of biocompatible surfaces by atom transfer radical polymerization grafting and evaluation of protein adsorption. Polym Preprints 46(2):1278
    144.Gao X, Zhu S, Sheardown H, Brash JL (2010) Nanoscale patterning through self-assembly of hydrophilic block copolymers with one chain end constrained to surface. Polymer 51(8):1771–1778
    145.Feng W, Brash JL, Zhu S (2005) Atom transfer radical polymerization grafting of 2-methacryloyloxyethyl phosphorylcholine for non-biofouling surfaces. Polym Preprints 46(2):154
    146.Feng W, Gao X, McClung G, Zhu S, Ishihara K, Brash JL (2011) Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets. Acta Biomater 7(10):3692–3699
    147.Feng W, Zhu S, Ishihara K, Brash JL (2006) Protein resistant surfaces: comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains. Biointerphases 1(1):50
    148.Zhu S, Brash JL, Feng W (2007) Atom transfer radical polymerization grafting for surface modification-high grafting density and controlled molecular weight. In: Proceedings 2007 annual meeting of the American Institute of Chemical Engineers (07AIChE). AIChE, Salt Lake City. Paper ID 101135
    149.Feng W, Nieh M-P, Zhu S, Harroun TA, Katsaras J, Brash JL (2007) Characterization of protein resistant, grafted methacrylate polymer layers bearing oligo(ethylene glycol) and phosphorylcholine side chains by neutron reflectometry. Biointerphases 2(1):34
    150.Jin Z, Brash JL, Zhu S (2010) ATRP grafting of oligo(ethylene glycol) methacrylates from gold surface — effect of monomer size on grafted chain and EO unit densities. Can J Chem 88(5):411–417
    151.Jin Z, Feng W, Beisser K, Zhu S, Sheardown H, Brash JL (2009) Protein-resistant polyurethane prepared by surface-initiated atom transfer radical graft polymerization (ATRgP) of water-soluble polymers: effects of main chain and side chain lengths of grafts. Colloids Surf B Biointerfaces 70(1):53–59
    152.Jin Z, Feng W, Zhu S, Sheardown H, Brash JL (2009) Protein-resistant polyurethane via surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methacrylate. J Biomed Mater Res A 91A(4):1189–1201
    153.Jin Z, Feng W, Zhu S, Sheardown H, Brash JL (2010) Protein-resistant polyurethane by sequential grafting of poly(2-hydroxyethyl methacrylate) and poly(oligo(ethylene glycol) methacrylate) via surface-initiated ATRP. J Biomed Mater Res A 95(4):1223–1232
    154.Jin Z, Feng W, Zhu S, Sheardown H, Brash JL (2010) Protein-resistant materials via surface-initiated atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine. J Biomater Sci Polym Ed 21(10):1331–1344
    155.Yu B-Y, Zheng J, Chang Y, Sin M-C, Chang C-H, Higuchi A, Sun Y-M (2014) Surface zwitterionization of titanium for a general Bio-inert control of plasma proteins, blood cells, tissue cells, and bacteria. Langmuir 30(25):7502–7512
    156.Sin M-C, Sun Y-M, Chang Y (2014) Zwitterionic-based stainless steel with well-defined polysulfobetaine brushes for general bioadhesive control. ACS Appl Mater Interfaces 6(2):861–873
    157.Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5(3):877–882
    158.Huang J, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K (2007) Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules 8(5):1396–1399
    159.Yu Q, Cho J, Shivapooja P, Ista LK, López GP (2013) Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl Mater Interfaces 5(19):9295–9304
    160.Kobayashi M, Terada M, Takahara A (2012) Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions. Faraday Discuss 156:403
    161.Kobayashi M, Terayama Y, Hosaka N, Kaido M, Suzuki A, Yamada N, Torikai N, Ishihara K, Takahara A (2007) Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Matter 3(6):740
    162.Chen M, Briscoe WH, Armes SP, Klein J (2009) Lubrication at physiological pressures by polyzwitterionic brushes. Science 323(5922):1698–1701
    163.Nomura A, Okayasu K, Ohno K, Fukuda T, Tsujii Y (2011) Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent quality and thereby swelling state. Macromolecules 44(12):5013–5019
    164.Bielecki RM, Benetti EM, Kumar D, Spencer ND (2012) Lubrication with oil-compatible polymer brushes. Tribol Lett 45(3):477–487
    165.Kumar S, Dory YL, Lepage M, Zhao Y (2011) Surface-grafted stimuli-responsive block copolymer brushes for the thermo-, photo- and pH-sensitive release of dye molecules. Macromolecules 44(18):7385–7393
    166.Kumar S, Tong X, Dory YL, Lepage M, Zhao Y (2013) A CO2-switchable polymer brush for reversible capture and release of proteins. Chem Commun 49(1):90–92
    167.Wischerhoff E, Uhlig K, Lankenau A, Börner HG, Laschewsky A, Duschl C, Lutz JF (2008) Controlled cell adhesion on PEG‐based switchable surfaces. Angew Chem Int Ed 47(30):5666–5668
    168.Kobayashi M, Terada M, Takahara A (2011) Reversible adhesive-free nanoscale adhesion utilizing oppositely charged polyelectrolyte brushes. Soft Matter 7(12):5717
    169.Kobayashi M, Takahara A (2013) Environmentally friendly repeatable adhesion using a sulfobetaine-type polyzwitterion brush. Polym Chem 4(18):4987
    170.Matrab T, Save M, Charleux B, Pinson J, Cabet-deliry E, Adenier A, Chehimi MM, Delamar M (2007) Grafting densely-packed poly(n-butyl methacrylate) chains from an iron substrate by aryl diazonium surface-initiated ATRP: XPS monitoring. Surf Sci 601(11):2357–2366
    171.Gong R, Maclaughlin S, Zhu S (2008) Surface modification of active metals through atom transfer radical polymerization grafting of acrylics. Appl Surf Sci 254(21):6802–6809
    172.Chen R, Zhu S, Maclaughlin S (2008) Grafting acrylic polymers from flat nickel and copper surfaces by surface-initiated atom transfer radical polymerization. Langmuir 24(13):6889–6896
    173.Lu G, Li Y-M, Lu C-H, Xu Z-Z (2010) Corrosion protection of iron surface modified by poly(methyl methacrylate) using surface-initiated atom transfer radical polymerization (SI-ATRP). Colloid Polym Sci 288(14–15):1445–1455
    174.Xie Z, Chen C, Zhou X, Gao T, Liu D, Miao Q, Zheng Z (2014) Massively parallel patterning of complex 2D and 3D functional polymer brushes by polymer pen lithography. ACS Appl Mater Interfaces 6(15):11955–11964
    175.Ohno K, Kayama Y, Ladmiral V, Fukuda T, Tsujii Y (2010) A versatile method of initiator fixation for surface-initiated living radical polymerization on polymeric substrates. Macromolecules 43(13):5569–5574
    176.Sweat DP, Kim M, Yu X, Schmitt SK, Han E, Choi JW, Gopalan P (2013) A dual functional layer for block copolymer self-assembly and the growth of nanopatterned polymer brushes. Langmuir 29(41):12858–12865
    177.Chen T, Amin I, Jordan R (2012) Patterned polymer brushes. Chem Soc Rev 41(8):3280
    178.Yue W-W, Li H-J, Xiang T, Qin H, Sun S-D, Zhao C-S (2013) Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. J Membr Sci 446:79–91
    179.Frost S, Ulbricht M (2013) Thermoresponsive ultrafiltration membranes for the switchable permeation and fractionation of nanoparticles. J Membr Sci 448:1–11
    180.Chen Y-C, Xie R, Chu L-Y (2013) Stimuli-responsive gating membranes responding to temperature, pH, salt concentration and anion species. J Membr Sci 442:206–215
    181.Ran J, Wu L, Zhang Z, Xu T (2014) Atom transfer radical polymerization (ATRP): a versatile and forceful tool for functional membranes. Prog Polym Sci 39(1):124–144
    182.Slowing II, Trewyn BG, Giri S, Lin VSY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17(8):1225–1236
    183.Zhou Z, Zhu S, Zhang D (2007) Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release. J Mater Chem 17(23):2428–2433
    184.Shen Y, Qi L, Wei X, Zhang R, Mao L (2011) Preparation of well-defined environmentally responsive polymer brushes on monolithic surface by two-step atom transfer radical polymerization method for HPLC. Polymer 52(17):3725–3731
    185.Zhu Y, Xu X, Brault ND, Keefe AJ, Han X, Deng Y, Xu J, Yu Q, Jiang S (2014) Cellulose paper sensors modified with zwitterionic poly(carboxybetaine) for sensing and detection in complex media. Anal Chem 86(6):2871–2875
    186.He H, Zhong M, Konkolewicz D, Yacatto K, Rappold T, Sugar G, David NE, Matyjaszewski K (2013) Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture. J Mater Chem A 1(23):6810
    187.Choi J, Hui CM, Schmitt M, Pietrasik J, Margel S, Matyjazsewski K, Bockstaller MR (2013) Effect of polymer-graft modification on the order formation in particle assembly structures. Langmuir 29(21):6452–6459
    188.Choi J, Hui CM, Pietrasik J, Dong H, Matyjaszewski K, Bockstaller MR (2012) Toughening fragile matter: mechanical properties of particle solids assembled from polymer-grafted hybrid particles synthesized by ATRP. Soft Matter 8(15):4072–4082
    189.Dang A, Hui CM, Ferebee R, Kubiak J, Li T, Matyjaszewski K, Bockstaller MR (2013) Thermal properties of particle brush materials: effect of polymer graft architecture on the glass transition temperature in polymer-grafted colloidal systems. Macromol Symp 331–332(1):9–16
    190.Dang A, Ojha SS, Hui CM, Mahoney C, Matyjaszewski K, Bockstaller MR (2014) High transparency polymer nanocomposites enabled by polymer graft modification of particle fillers. Langmuir 30(48):14434–14442
    191.Pyun J (2007) Nanocomposite materials from functional polymers and magnetic colloids. Polym Rev 47(2):231–263
    192.Bull MM, Chung WJ, Anderson SR, Kim S-J, Shim I-B, Paik H-J, Pyun J (2010) Synthesis of ferromagnetic polymer coated nanoparticles on multi-gram scale with tunable particle size. J Mater Chem 20(29):6023
    193.Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M (2004) Surface-initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer 45(7):2231–2235
    194.Zeltner M, Grass RN, Schaetz A, Bubenhofer SB, Luechinger NA, Stark WJ (2012) Stable dispersions of ferromagnetic carbon-coated metal nanoparticles: preparation via surface initiated atom transfer radical polymerization. J Mater Chem 22(24):12064
    195.Chen R, Maclaughlin S, Botton G, Zhu S (2009) Preparation of Ni-g-polymer core–shell nanoparticles by surface-initiated atom transfer radical polymerization. Polymer 50(18):4293–4298
    196.Gu H, Faucher S, Zhu S (2012) Magnetic organosilica nanoparticles for localized polymer surface modification. Macromol Mater Eng 297(3):263–271
    197.Liu G, Cai M, Wang X, Zhou F, Liu W (2014) Core–shell–corona-structured polyelectrolyte brushes-grafting magnetic nanoparticles for water harvesting. ACS Appl Mater Interfaces 6(14):11625–11632
    198.Dong H, Huang J, Koepsel RR, Ye P, Russell AJ, Matyjaszewski K (2011) Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes. Biomacromolecules 12(4):1305–1311
    199.Zeltner M, Toedtli LM, Hild N, Fuhrer R, Rossier M, Gerber LC, Raso RA, Grass RN, Stark WJ (2013) Ferromagnetic inks facilitate large scale paper recycling and reduce bleach chemical consumption. Langmuir 29(16):5093–5098
    200.Tian C, Bao C, Binder A, Zhu Z, Hu B, Guo Y, Zhao B, Dai S (2013) An efficient and reusable “hairy” particle acid catalyst for the synthesis of 5-hydroxymethylfurfural from dehydration of fructose in water. Chem Commun 49(77):8668–8670
    201.Farmer SC, Patten TE (2001) Photoluminescent polymer/quantum dot composite nanoparticles. Chem Mater 13(11):3920–3926
    202.Esteves ACC, Bombalski L, Trindade T, Matyjaszewski K, Barros-Timmons A (2007) Polymer grafting from CdS quantum dots via AGET ATRP in miniemulsion. Small 3(7):1230–1236
    203.Berger S, Synytska A, Ionov L, Eichhorn K-J, Stamm M (2008) Stimuli-responsive bicomponent polymer janus particles by “grafting from”/“grafting to” approaches. Macromolecules 41(24):9669–9676
    204.Liu B, Wei W, Qu X, Yang Z (2008) Janus colloids formed by biphasic grafting at a pickering emulsion interface. Angew Chem Int Ed 47(21):3973–3975
    205.Zhou T, Wang B, Dong B, Li CY (2012) Thermoresponsive amphiphilic janus silica nanoparticles via combining “polymer single-crystal templating” and “grafting-from” methods. Macromolecules 45(21):8780–8789
  • 作者单位:Amir Khabibullin (19)
    Erlita Mastan (20)
    Krzysztof Matyjaszewski (19)
    Shiping Zhu (20)

    19. Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
    20. Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4L7
  • 丛书名:Controlled Radical Polymerization at and from Solid Surfaces
  • ISBN:978-3-319-22138-0
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-5030
文摘
This review covers the basic principles of surface-initiated atom transfer radical polymerization (SI-ATRP). SI-ATRP is a robust and versatile method for preparation of various hybrid materials with controlled molecular characteristics of the tethered polymer chains, such as polymer composition and architecture. Various aspects of SI-ATRP, such as polymer brush grafting density, surface geometry, and reaction conditions, including structure of initiator, ligand, and catalyst, are important for engineering the structure and properties of the hybrid polymer materials. Elementary reactions, such as initiation, propagation, termination, transfer, and activation/deactivation equilibria as well as factors affecting these processes are discussed. The properties of materials prepared by SI-ATRP are illustrated through several selected examples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700