Comparative study of plant growth of two poplar tree species irrigated with treated wastewater, with particular reference to accumulation of heavy metals (Cd, Pb, As, and Ni)
详细信息    查看全文
  • 作者:Zarati Houda ; Zoubeir Bejaoui ; Ali Albouchi…
  • 关键词:Heavy metals ; Phytoremediation ; Poplar ; Wastewater
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:188
  • 期:2
  • 全文大小:462 KB
  • 参考文献:Abassi, M., Mguis, K., Nja, R. B., Albouchi, A., Boujneh, D., & Béjaoui, Z. (2012). Adaptations micromorphologiques foliaires développées par le peuplier blanc (Populus alba L.) face à la salinité. Acta Botanica Gallica: Botany Letters, 159, 9–15.CrossRef
    Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Science, 196, 67–76.CrossRef
    Al-Lahham, O., El Assi, N. M., & Fayyad, M. (2003). Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit. Agricultural Water Management, 61, 5l–62l.CrossRef
    Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91, 869–881.CrossRef
    Baker, A. J. M., & Walker, P. L. (1990). Ecophysiology of metal uptake by tolerant plants. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: evolutionary aspects (pp. 155–177). Boca Raton: CRC.
    Basile, A., Ciollaro, G., & Coppola, A. (2003). Hysteresis in soil water characteristics as a key to interpreting comparisons of laboratory and field measured hydraulic properties. Water Resources Research, 39, 1355.CrossRef
    Bejaoui, Z., Albouchi, A., Lamhamedi, M. S., Abassi, M., & El Aouni, M. H. (2012). Adaptation and morpho-physiology of three Populus deltoides Marsh. x P. nigra L. clones after preconditioning to prolonged water logging. Agroforestry Systems, 86, 433–442.CrossRef
    Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103–120.CrossRef
    Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRef
    Chen, S., Jiang, J., Li, H., & Liu, G. F. (2012). The salt-responsive transcriptome of Populus simonii × Populus nigra via DGE. Gene, 504, 203–212.CrossRef
    Ciadamidaro, L., Madejón, E., Puschenreiter, M., & Madejón, P. (2013). Growth of Populus alba and its influence on soil trace element availability. Science of the Total Environment, 454–455, 337–347.CrossRef
    Claire-Lise, M., & Nathalie, V. (2012). The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. Nature Biotechnology, 30, 9–14.
    Collins, C. D. (1999). Strategies for minimizing environmental contaminants. Trends in Plant Science, 4, 45.CrossRef
    Cornel, P., & Weber, B. (2004). Water reuse for irrigation from waste water treatment plants with seasonal varied operation modes. Water Science and Technology, 50, 47–53.
    Danh, L. T., Truong, P., Mammucari, R., & Foster, N. (2014). A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. International Journal of Phytoremediation, 16, 429–453.CrossRef
    De Abreu, I. N., & Mazzafera, P. (2005). Effect of water and temperature stress on the content of active constituents of Hypericum brasilienne Choisy. Plant Physiology and Biochemistry, 43, 241–248.CrossRef
    Di Baccio, D., Tognetti, R., Minnocci, A., & Sebastiani, L. (2009). Responses of the Populus × euramericana clone I-214 to excess zinc: carbon assimilation, structural modifications, metal distribution and cellular localization. Environmental and Experimental Botany, 67, 154–158.CrossRef
    Di Lonardo, S., Capuana, M., Arnetoli, M., Gabbrielli, R., & Gonnelli, C. (2011). Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environmental Science and Pollution Research, 18, 82–90.CrossRef
    Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085–1097.CrossRef
    Faizan, S., Kausar, S., & Akhtar, N. (2014). Influence of wastewater application and fertilizer use on growth, photosynthesis, nutrient homeostasis, yield and heavy metal accumulation in okra (Abelmoschus esculentus L. Moench). Pakistan Journal of Biological Sciences, 17, 630–640.CrossRef
    FAO. (2009). Situation des forêts du monde. Rome, Italy: Organisation des Nations Unies pour l’alimentation et l’Agriculture.
    Gupta, D. K., Huang, H. G., & Corpas, F. J. (2013a). Lead tolerance in plants: strategies for phytoremediation. Environmental Science and Pollution Research, 20, 2150–2161.CrossRef
    Gupta, D. K., Huang, H. G., Nicoloso, F. T., Schetinger, M. R. C., Farias, J. G., Li, T. Q., Razafindrabe, B. H. N., Aryal, N., & Inouhe, M. (2013b). Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in Pfaffia glomerata. Ecotoxicology, 22, 1403–1412.CrossRef
    Hamrouni, L., Ben Abdallah, F., Abdelly, C., & Ghorbel, A. (2008). La culture in vitro: un moyen rapide et efficace pour sélectionner des génotypes de vigne tolérant la salinité. Comptes Rendus Biologies, 331, 152–163.CrossRef
    Hu, Y., Nan, Z., Jin, C., Wang, N., & Luo, H. (2014). Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium. International Journal of Phytoremediation, 16, 482–495.CrossRef
    Huang, H. G., Gupta, D. K., Tian, S. K., Yang, X. E., & Li, T. X. (2012). Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii. Environmental Science and Pollution Research, 19, 1640–1651.CrossRef
    Imada, S., Yamanaka, N., & Tamai, S. (2014). Effects of salinity on the growth, Na partitioning, and Na dynamics of a salt-tolerant tree, Populus alba L. Journal of Arid Environments, 73, 245–251.CrossRef
    Kim, D. O., Heo, H. J., Kim, Y. J., Yang, H. S., & Lee, C. Y. (2005). Sweet and sour cherry phenolics and their protective effects on neuronal cells. Journal of Agricultural and Food Chemistry, 53, 9921–9927.CrossRef
    Kiziloglu, F. M., Turan, M., Sahin, U., Kuslu, Y., & Dursun, A. (2008). Effects of untreated and treated wastewater irrigation on some chemical properties of cauliflower (Brassica olerecea L. var. botrytis) and red cabbage (Brassica olerecea L. var. rubra) grown on calcareous soil in Turkey. Agricultural Water Management, 95, 716–724.CrossRef
    Llamas, A., Ullrich, C. I., & Sanz, A. (2008). Ni2+ toxicity in rice: effect on membrane functionality and plant water content. Plant Physiology and Biochemistry, 46, 905–910.CrossRef
    Madejón, P., Marañón, T., Murillo, J. M., & Robinson, B. (2004). White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environmental Pollution, 132, 145–155.CrossRef
    Madejón, P., Ciadamidaro, L., Marañón, T., & Murillo, J. M. (2013). Long-term biomonitoring of soil contamination using poplar trees: accumulation of trace elements in leaves and fruits. International Journal of Phytoremediation, 15, 602–614.CrossRef
    Marmiroli, M., Pietrini, F., Maestri, E., Zacchini, M., Marmiroli, N., & Massacci, A. (2011). Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology, 31, 1319–1334.CrossRef
    McKiernan, A. B., Hovenden, M. J., Brodribb, T. J., Potts, B. M., Davies, N. W., & O’Reilly-Wapstra, J. M. (2014). Effect of limited water availability on foliar plant secondary metabolites of two Eucalyptus species. Environmental and Experimental Botany, 105, 55–64.CrossRef
    Meers, E., Vandecasteele, B., Ruttens, A., Vangronsveld, J., & Tack, F. M. G. (2007). Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environmental and Experimental Botany, 60, 57–68.CrossRef
    Merino, I., Contreras, A., Ping, Z. P., Gallardo, F., Cánovas, F. M., & Gómez, L. (2014). Plantation forestry under global warming: hybrid poplars with improved thermos tolerance provide new insights on the in vivo function of small heat shock protein chaperones. Plant Physiology, 164, 978–991.CrossRef
    Mohammad-Rusan, M. J., Hinnawi, S., & Rousan, L. (2007). Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination, 215, 143–152.CrossRef
    Navarro, J. M., Flores, P., Garrido, C., & Martinez, V. (2006). Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chemistry, 96, 66–73.CrossRef
    Nsanganwimana, F., Marchand, L., Douay, F., & Mench, M. (2014). Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. A review. International Journal of Phytoremediation, 16, 982–1017.CrossRef
    Pascual, I., Azcona, I., Aguirreolea, J., Morales, F., Corpas, F. J., Palma, J. M., Rellán-Alvarez, R., & Sánchez-Díaz, M. (2010). Growth, yield, and fruit quality of pepper plants amended with two sanitized sewage sludge. Journal of Agricultural and Food Chemistry, 58, 6951–6959.CrossRef
    Pinelo, M., Rubilar, M., Sineiro, J., & Núñez, M. J. (2004). Extraction of antioxidant phenolics from almond hulls (Prunus amygdaleus) and pine sawdust (Pinus pinaster). Food Chemistry, 85, 267–273.CrossRef
    Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.CrossRef
    Sluchyk, V., Sluchyk, I., & Shyichuk, A. (2014). Assessment of both environmental cytotoxicity and trace metal pollution using Populus simonii Carr. as a bioindicator. Environmental Monitoring and Assessment, 186, 6645–6650.CrossRef
    Steiner, L., Rosselli, W., Combe, J., Barbezat, V., & Buttler, A. (2006). Reboisement de sites pollues—Enseignements tires d’une etude de cas avec des metaux lourds. Schweizerische Zeitschrift für Forstwesen, 157, 157–161.CrossRef
    Sun, B., Ricardo-da-Silva, J. M., & Spranger, I. (1998). Critical factors of vanillin assay for catechins and proanthocyanidins. Journal of Agricultural and Food Chemistry, 46, 4267–4274.CrossRef
    Vollenweider, P., Bernasconi, P., Gautschi, H. P., Menard, T., Frey, B., & Günthardt-Goerg, M. S. (2011a). Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles. Environmental Pollution, 159, 337–347.CrossRef
    Vollenweider, P., Menard, T., & Günthardt-Goerg, M. S. (2011b). Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level. Environmental Pollution, 159, 324–336.CrossRef
    Xiong, Z. T. (1997). Bioaccumulation and physiological effects of excess lead in a roadside pioneer species Sonchus oleraceus L. Environmental Pollution, 97, 275–279.CrossRef
    Xu, M. (2007). Nitric oxide: a potential key-point of the signaling network leading to plant secondary metabolite biosynthesis. Progress in Natural Science, 17, 1397–1404.
    Yadav, R., Arora, P., Kumar, S., & Chaudhury, A. (2010). Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology, 19, 1574–1588.CrossRef
    Zalesny, J. A., Zalesny, R. S., Jr., Wiese, A. H., & Hall, R. B. (2007). Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection. International Journal of Phytoremediation, 9, 513–530.CrossRef
    Zarati, H., Mguis, K., Abassi, M., Jouili, H., Albouchi, A., Youssef, A., Lamhamedi, M. S., & Béjaoui, Z. (2015). Growth, gas exchanges and accumulation of inorganic matter of Populus nigra L. in responses to treated wastewater. Journal of Biodiversity and Environmental Sciences, 6, 297–305.
    Zhang, B., Cai, J., Duan, C. Q., Reeves, M. J., & He, F. (2015). A review of polyphenolics in oak woods. International Journal of Molecular Sciences, 16, 6978–7014.CrossRef
    Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicads. Food Chemistry, 64, 555–559.CrossRef
    Zupančič, J. M., Pajk, N., Zupanc, V., & Zupančič, M. (2010). Phytoremediation of landfill leachate and compost wastewater by irrigation of Populus and Salix: biomass and growth response. Waste Management, 30, 3–8.
  • 作者单位:Zarati Houda (1) (2) (3)
    Zoubeir Bejaoui (2)
    Ali Albouchi (2)
    Dharmendra K. Gupta (4)
    Francisco J. Corpas (1)

    1. Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080, Granada, Spain
    2. Agroforestry Unit of the National Institute for Research in Rural Engineering Water and Forestry (INRGREF) of Tunisia, Tunis, Tunisia
    3. Faculty of Sciences of Bizerte Zarzouna Tunisia, University Tunis Carthage, Zarzouna, Tunisia
    4. Institut für Radioökologie und Strahlenschutz (IRS), Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
Water is a scarce natural resource around the world which can hamper the socio-economic development of many countries. The Mediterranean area, especially north Africa, is known for its semi-arid to arid climate, causing serious water supply problems. Treated wastewater (TWW) is being used as an alternative strategy for recycling wastewater. It is also a potential source of nutrients for reforestation with certain plant species such as poplar trees, a useful wood resource, and even for phytoremediation purposes. In the present study, we used treated wastewater to irrigate two clones of 1-year-old poplar trees (Populus nigra cv. I-488 and Populus alba cv. MA-104) for 90 days. After a stipulated time, a comparative study was made of the effects of TWW on growth parameters, acquisition of essential minerals (Na, Fe and Zn) and pollutants (Cd, Pb, As and Ni) as well as the enrichment of secondary metabolites such as polyphenolic, flavonoid and tannin compounds which could contribute to the growth and development of poplar plants. The results of this study show that the use of TWW increased P. alba’s biomass production by 36 % and also enhanced its Cd and Pb accumulation capacity. We also found that P. alba has considerable potential to be used as an alternative plant species for reforestation and/or phytoremediation of toxic metals from contaminated water or effluent.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700