In situ Studies of Morphology Formation in Solution-Processed Polymer–Fullerene Blends
详细信息    查看全文
  • 关键词:Bulk heterojunction ; Crystallization ; Drying kinetics ; GIWAXS ; P3HT ; PCBM ; PSBTBT ; Real ; time studies ; Solution processing
  • 刊名:Advances in Polymer Science
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:272
  • 期:1
  • 页码:1-24
  • 参考文献:1.Liao H-C et al (2013) Additives for morphology control in high-efficiency organic solar cells. Mater Today 16(9):326–336CrossRef
    2.Liu F et al (2013) Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. Prog Polym Sci 38(12):1990–2052CrossRef
    3.Treat ND, Chabinyc ML (2014) Phase separation in bulk heterojunctions of semiconducting polymers and fullerenes for photovoltaics. Annu Rev Phys Chem 65:59–81CrossRef
    4.Clarke TM et al (2008) Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends. Adv Funct Mater 18(24):4029–4035CrossRef
    5.Chen F-C et al (2010) Morphological study of P3HT:PCBM blend films prepared through solvent annealing for solar cell applications. Sol Energy Mater Sol Cells 94(12):2426–2430CrossRef
    6.Liu X et al (2012) Solvent additive control of morphology and crystallization in semiconducting polymer blends. Adv Mater 24(5):669–674CrossRef
    7.Schmidt-Hansberg B et al (2011) Moving through the phase diagram: morphology formation in solution cast polymer-fullerene-blend films for organic solar cells. ACS Nano 5(11):8579–8590CrossRef
    8.Schmidt-Hansberg B et al (2009) In situ monitoring the drying kinetics of knife coated polymer-fullerene films for organic solar cells. J Appl Phys 106(12):124501CrossRef
    9.Sanyal M et al (2011) In situ X-ray study of drying-temperature influence on the structural evolution of bulk-heterojunction polymer-fullerene solar cells processed by doctor-blading. Adv Energy Mater 1(3):363–367CrossRef
    10.Sanyal M et al (2011) Effect of photovoltaic polymer/fullerene blend composition ratio on microstructure evolution during film solidification investigated in real time by X-ray diffraction. Macromolecules 44(10):3795–3800CrossRef
    11.Schmidt-Hansberg B et al (2012) Investigation of non-halogenated solvent mixtures for high throughput fabrication of polymer–fullerene solar cells. Sol Energy Mater Sol Cells 96:195–201CrossRef
    12.Schmidt-Hansberg B et al (2011) Spatially resolved drying kinetics of multi-component solution cast films for organic electronics. Chem Eng Process Process Intensif 50(5–6):509–515CrossRef
    13.Bergqvist J et al (2013) In situ reflectance imaging of organic thin film formation from solution deposition. Sol Energy Mater Sol Cells 114:89–98CrossRef
    14.Heriot SY, Jones RA (2005) An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films. Nat Mater 4(10):782–786CrossRef
    15.Schmidt-Hansberg B (2012) Process-structure-property relationship of polymer-fullerene bulk heterojunction films for organic solar cells: drying process, film structure and optoelectronic properties. Cuvillier, Göttingen
    16.Wang T et al (2010) The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter 6(17):4128–4134CrossRef
    17.Vogt BD et al (2005) Moisture absorption into ultrathin hydrophilic polymer films on different substrate surfaces. Polymer 46(5):1635–1642CrossRef
    18.Eastman SA et al (2012) Effect of confinement on structure, water solubility, and water transport in Nafion thin films. Macromolecules 45(19):7920–7930CrossRef
    19.Baker JL et al (2010) Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector. Langmuir 26(11):9146–9151CrossRef
    20.Muller-Buschbaum P (2014) The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv Mater 26(46):7692–7709CrossRef
    21.Rivnay J et al (2012) Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem Rev 112(10):5488–5519CrossRef
    22.van Krevelen DW (1990) Properties of polymers: their correlation with chemical structure: their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam
    23.Yang X et al (2004) Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv Mater 16(9–10):802–806CrossRef
    24.Yao Y et al (2008) Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Adv Funct Mater 18(12):1783–1789CrossRef
    25.Westacott P et al (2013) On the role of intermixed phases in organic photovoltaic blends. Energy Environ Sci 6(9):2756CrossRef
    26.Collins BA, Tumbleston JR, Ade H (2011) Miscibility, crystallinity, and phase development in P3HT/PCBM solar cells: toward an enlightened understanding of device morphology and stability. J Phys Chem Lett 2(24):3135–3145CrossRef
    27.DeLongchamp DM et al (2011) Molecular characterization of organic electronic films. Adv Mater 23(3):319–337CrossRef
    28.Richter LJ et al (2015) In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films. Adv Energy Mater 5(3):1400975CrossRef
    29.Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338CrossRef
    30.Ma W et al (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15(10):1617–1622CrossRef
    31.Li G et al (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868CrossRef
    32.Mihailetchi VD et al (2006) Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer. Appl Phys Lett 89(1):012107CrossRef
    33.Li G et al (2007) “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17(10):1636–1644CrossRef
    34.Shin M et al (2010) Abrupt morphology change upon thermal annealing in poly(3-hexylthiophene)/soluble fullerene blend films for polymer solar cells. Adv Funct Mater 20(5):748–754CrossRef
    35.Campoy-Quiles M et al (2008) Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nat Mater 7(2):158–164CrossRef
    36.Schmidt-Hansberg B et al (2012) Structure formation in low-bandgap polymer:fullerene solar cell blends in the course of solvent evaporation. Macromolecules 45(19):7948–7955CrossRef
    37.Brinkmann M et al. (2014) Understanding the structure and crystallization of regioregular poly (3-hexylthiophene) from the perspective of epitaxy, vol 265. Springer, Heidelberg, pp 83–106
    38.Chu C-W et al (2008) Control of the nanoscale crystallinity and phase separation in polymer solar cells. Appl Phys Lett 92(10):103306CrossRef
    39.Moulé AJ, Meerholz K (2008) Controlling morphology in polymer–fullerene mixtures. Adv Mater 20(2):240–245CrossRef
    40.Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv Mater 23(31):3579–3602CrossRef
    41.Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91(11):954–985CrossRef
    42.Scharber MC et al (2010) Influence of the bridging atom on the performance of a low-bandgap bulk heterojunction solar cell. Adv Mater 22(3):367–370CrossRef
    43.Maurano A et al (2010) Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: a comparison of four different donor polymers. Adv Mater 22(44):4987–4992CrossRef
    44.Hou J et al (2008) Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J Am Chem Soc 130(48):16144–16145CrossRef
    45.Chen HY et al (2010) Silicon atom substitution enhances interchain packing in a thiophene-based polymer system. Adv Mater 22(3):371–375CrossRef
    46.Morana M et al (2010) Nanomorphology and charge generation in bulk heterojunctions based on low-bandgap dithiophene polymers with different bridging atoms. Adv Funct Mater 20(7):1180–1188CrossRef
    47.Colsmann A et al (2011) Efficient semi-transparent organic solar cells with good transparency color perception and rendering properties. Adv Energy Mater 1(4):599–603CrossRef
    48.Chou C-H et al (2011) A metal-oxide interconnection layer for polymer tandem solar cells with an inverted architecture. Adv Mater 23(10):1282–1286CrossRef
    49.Sista S et al (2010) Highly efficient tandem polymer photovoltaic cells. Adv Mater 22(3):380–383CrossRef
    50.Ameri T et al (2013) Organic ternary solar cells: a review. Adv Mater 25(31):4245–4266CrossRef
    51.Koppe M et al (2010) Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral response of organic solar cells. Adv Funct Mater 20(2):338–346CrossRef
    52.Ameri T et al (2012) Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer. Adv Energy Mater 2(10):1198–1202CrossRef
    53.Pearson AJ et al (2014) Morphology development in amorphous polymer:fullerene photovoltaic blend films during solution casting. Adv Funct Mater 24(5):659–667CrossRef
    54.Agostinelli T et al (2011) The role of alkane dithiols in controlling polymer crystallization in small band gap polymer:fullerene solar cells. J Polym Sci B 49(10):717–724CrossRef
    55.Rogers JT et al (2011) Structural order in bulk heterojunction films prepared with solvent additives. Adv Mater 23(20):2284–2288CrossRef
    56.Rogers JT et al (2012) Time-resolved structural evolution of additive-processed bulk heterojunction solar cells. J Am Chem Soc 134(6):2884–2887CrossRef
    57.Pearson AJ, Wang T, Lidzey DG (2013) The role of dynamic measurements in correlating structure with optoelectronic properties in polymer:fullerene bulk-heterojunction solar cells. Rep Prog Phys 76(2):022501CrossRef
    58.Engmann S et al (2015) Real-time X-ray scattering studies of film evolution in high performing small-molecule-fullerene organic solar cells. J Mater Chem A 3(16):8764–8771CrossRef
    59.Chou KW et al (2013) Spin-cast bulk heterojunction solar cells: a dynamical investigation. Adv Mater 25(13):1923–1929CrossRef
    60.Schmidt K et al (2014) A mechanistic understanding of processing additive-induced efficiency enhancement in bulk heterojunction organic solar cells. Adv Mater 26(2):300–305CrossRef
    61.Smilgies D-M et al (2013) Look fast: crystallization of conjugated molecules during solution shearing probed in-situ and in real time by X-ray scattering. Phys Status Solidi RRL 7(3):177–179CrossRef
    62.Wei Chou K et al (2014) Late stage crystallization and healing during spin-coating enhance carrier transport in small-molecule organic semiconductors. J Mater Chem C 2(28):5681–5689CrossRef
  • 作者单位:Esther Barrena (20)
    Felix Buss (21)
    Ana Perez-Rodriguez (20)
    Monamie Sanyal (22)
    Benjamin Schmidt-Hansberg (21)
    Michael F. G. Klein (23)
    Philip Scharfer (21)
    Wilhelm Schabel (21)
    Uli Lemmer (23)

    20. Instituto de Ciencia de Materiales de Barcelona (ICMAB CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
    21. Institute of Thermal Process Engineering, Thin Film Technology, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
    22. Max Planck Institut für Metallforschung, Heisenbergstrasse 3, 70569, Stuttgart, Germany
    23. Light Technology Institute, Karlsruhe Institute of Technology, Engesserstraße 13, 76131, Karlsruhe, Germany
  • 丛书名:Elementary Processes in Organic Photovoltaics
  • ISBN:978-3-319-28338-8
  • 卷排序:272
文摘
Control of the blend nanomorphology in bulk heterojunctions (BHJs) is still a challenge that demands more fundamental knowledge of the mechanism of phase separation and crystallization during solvent drying. In this review we show that in situ studies using combined laser reflectometry and grazing-incidence wide-angle X-ray scattering provide a fundamental understanding on how the nanomorphology develops dynamically during film drying. We identify influencing parameters for controlled film formation in order to obtain optimized solar cell performance. We review here our results on BHJs of poly(3-hexylthiophene)–[6,6]-phenyl-C61-butyric acid methyl ester and poly{[4,40-bis(2-ethylhexyl)dithieno(3,2-b;20,30-d)silole]-2,6-diyl-alt-(2,1,3 benzothidiazole)-4,7-diyl} with [6,6]-phenyl-C71-butyric acid methyl ester.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700