Mixed integer programming of generalized hydro-thermal self-scheduling of generating units
详细信息    查看全文
  • 作者:J. Aghaei (1)
    A. Ahmadi (2)
    H. A. Shayanfar (2)
    A. Rabiee (3)
  • 关键词:Hydro ; thermal self scheduling ; Mixed ; integer programming ; Dynamic ramp rate ; Prohibited operating zones ; Valve loading effect
  • 刊名:Electrical Engineering (Archiv fur Elektrotechnik)
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:95
  • 期:2
  • 页码:109-125
  • 全文大小:706KB
  • 参考文献:1. Voorspools KR, D鈥檋aeseleer WD (2003) Long-term unit commitment optimization for large power systems: unit decommitment versus advanced priority listing. Appl Energy 76(1鈥?): 157鈥?67 CrossRef
    2. Lee FN (1988) Short-term thermal unit commitment-a new method. IEEE Trans Power Syst 3(2): 421鈥?28 CrossRef
    3. Tang J, Luh PB (1995) Hydrothermal scheduling via extended differential dynamic programming and mixed coordination. IEEE Trans Power Syst 10(4): 2021鈥?028 CrossRef
    4. Hsu YY, Su CC, Liang CC, Lin CJ, Huang CT (1991) Dynamic security constrained multi-area unit commitment. IEEE Trans Power Syst 6(3): 1049鈥?055
    5. Ma H, Shahidehpour SM (1999) Unit commitment with transmission security and voltage constraints. IEEE Trans Power Syst 14(2): 757鈥?64 CrossRef
    6. Salam MS (2004) Comparison of Lagrangian relaxation and truncated dynamic programming methods for solving hydrothermal coordination problems. In: Proceedings of international conference on intelligent sensing and information processing, pp 265鈥?70
    7. Parrilla E, Garcia-Gonzlez J (2006) Improving the B&B search for large-scale hydrothermal weekly scheduling problems. Int J Electr Power Energy Syst 28(5): 339鈥?48 CrossRef
    8. Bisanovic S, Hajro M, Dlakic M (2008) Hydrothermal self-scheduling problem in a day-ahead electricity market. Electr Power Syst Res 78(9): 1579鈥?596 CrossRef
    9. Delarue E, D鈥檋aeseleer W (2008) Adaptive mixed-integer programming unit commitment strategy for determining the value of forecasting. Appl Energy 85(4): 171鈥?81 CrossRef
    10. Ma H, Shahidehpour M (1998) Transmission-constrained unit commitment based on benders decomposition. Int J Electr Power Energy Syst 20(4): 287鈥?94 CrossRef
    11. Liu C, Shahidehpour M, Wu L (2010) Extended benders decomposition for two-stage SCUC. IEEE Trans Power Syst 25(2): 1192鈥?194 CrossRef
    12. Holland JH (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor
    13. Fogel DB (2000) What is evolutionary computation. IEEE Spectr 37(2): 28鈥?2 CrossRef
    14. Shebl茅 GB, Maifeld TT, Brittig K, Fahd G, Fukurozaki- Coppinger S (1996) Unit commitment by genetic algorithm with penalty methods and a comparison of lagrangian search and genetic algorithm鈥攅conomic dispatch example. Int J Electr Power Energy Syst 18(6): 339鈥?46 CrossRef
    15. Lakshmi K, Vasantharathna S (2009) A profit based unit commitment problem in deregulated power markets. In: International conference on power systems ICPS鈥?09, pp 1鈥?
    16. Wong KP, Wong YW (1994) Short-term hydrothermal scheduling. II. Parallel simulated annealing approach. Proc IEEE Gener Transm Distrib 141(5): 502鈥?06 CrossRef
    17. Simopoulos DN, Kavatza SD, Vournas CD (2006) Unit commitment by an enhanced simulated annealing algorithm. IEEE Trans Power Syst 21(1): 68鈥?6 CrossRef
    18. Sriyanyong P, Song YH (2005) Unit commitment using particle swarm optimization combined with Lagrange relaxation. IEEE Power Eng Soc Gen Meet 3: 2752鈥?759
    19. Jiekang W, Jianquan Z, Guotong C, Hongliang Z (2008) A hybrid method for optimal scheduling of short-term electric power generation of cascaded hydroelectric plants based on particle swarm optimization and chance-constrained programming. IEEE Trans Power Syst 23(4): 1570鈥?579 CrossRef
    20. Ouyang Z, Shahidehpour SM (1992) A hybrid artificial neural network-dynamic programming approach to unit commitment. IEEE Trans Power Syst 7(1): 236鈥?42 CrossRef
    21. Kurban M, Filik UB (2008) Unit commitment scheduling by using the autoregressive and artificial neural network models based short-term load forecasting. In: Proceedings PMAPS 鈥?8 of the 10th international Conference on probabilistic methods applied to Power Systems, pp 1鈥?
    22. Niknam T (2010) A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem. Appl Energy 87(1): 327鈥?39 CrossRef
    23. Rajan CCA, Mohan MR (2004) An evolutionary programming-based tabu search method for solving the unit commitment problem. IEEE Trans Power Syst 19(1): 577鈥?85 CrossRef
    24. Yang HT, Yang PC, Huang CL (1996) Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions. IEEE Trans Power Syst 11(1): 112鈥?18 CrossRef
    25. Niknam T, Khodaei A, Fallahi F (2009) A new decomposition approach for the thermal unit commitment problem. Appl Energy 86(9): 1667鈥?674 CrossRef
    26. Catalao JPS, Mariano SJPS, Mendes VMF, Ferreira LAFM (2010) A practical approach for profit-based unit commitment with emission limitations. Electr Power Energy Syst 32(3): 218鈥?24 CrossRef
    27. Kazempour SJ, Moghaddam MP (2011) Risk-constrained self-scheduling of a fuel and emission constrained power producer using rolling window procedure. Electr Power Energy Syst 33(2): 359鈥?68 CrossRef
    28. Padhy NP (2004) Unit commitment鈥攁 bibliographical survey. IEEE Trans Power Syst 19(2): 1196鈥?005 CrossRef
    29. Shahidehpour M, Yamin H, Li Z (2002) Market operations in electric power systems: forecasting, scheduling, and risk management. Wiley, New York CrossRef
    30. Nilsson O, Sjelvgren D (1997) Hydro unit start-up costs and their impact on the short term scheduling strategies of swedish power producers. IEEE Trans Power Syst 12(1): 38鈥?4 CrossRef
    31. Daneshi H, Choobbari AH, Shahidehpour M, Li Z (2008) Mixed integer programming method to solve security constrained unit commitment with restricted operating zone limits. In: IEEE International conference on electro/information technology EIT, pp 187鈥?92
    32. Arroyo JM, Conejo AJ (2000) Optimal response of a thermal unit to an electricity spot market. IEEE Trans Power Syst 15(3): 1098鈥?104 CrossRef
    33. Li T, Shahidehpour M (2005) Price-based unit commitment: a case of lagrangian relaxation versus mixed integer programming. IEEE Trans Power Syst 20(4): 2015鈥?025 CrossRef
    34. Walters DC, Sheble GB (1993) Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans Power Syst 8(3): 1325鈥?332 CrossRef
    35. Selvakumar AI, Thanushkodi K (2007) A new particle swarm optimization solution to non-convex economic dispatch problems. IEEE Trans Power Syst 22(1): 42鈥?1 CrossRef
    36. Amjady N, Rad HN (2009) Non-convex economic dispatch with AC constraints by a new real coded genetic algorithm. IEEE Trans Power Syst 24(3): 1489鈥?502 CrossRef
    37. Wu L, Shahidehpour M, Li T (2008) GENCO鈥檚 risk-based maintenance outage scheduling. IEEE Trans Power Syst 23(1): 127鈥?36 CrossRef
    38. Li T, Shahidehpour M (2007) Dynamic ramping in unit commitment. IEEE Trans Power Syst 22(3): 1379鈥?381 CrossRef
    39. Li Z, Shahidehpour M (2005) Security-constrained unit commitment for simultaneous clearing of energy and ancillary services markets. IEEE Trans Power Syst 20(2): 1079鈥?088 CrossRef
    40. Wu L, Shahidehpour M, Li T (2007) Stochastic security-constrained unit commitment. IEEE Trans Power Syst 22(2): 800鈥?11 CrossRef
    41. Li T, Shahidehpour M (2007) Risk-constrained generation asset arbitrage in power systems. IEEE Trans Power Syst 22(3): 1330鈥?339 CrossRef
    42. Mezger AJ, de-Almeida KC (2007) Short term hydrothermal scheduling with bilateral transactions via bundle method. Int J Electr Power Energy Syst 29(5): 387鈥?96 CrossRef
    43. Galiana FD, Kockar I, Franco PC (2002) Combined pool/bilateral dispatch鈥攑art I: performance of trading strategies. IEEE Trans Power Syst 17(1): 92鈥?9 CrossRef
    44. Conejo AJ, Arroyo JM, Contreras J, Villamor FA (2002) Self-scheduling of a hydro producer in a pool-based electricity market. IEEE Trans Power Syst 17(4): 1265鈥?272 CrossRef
    45. Generalized algebraic modeling systems (GAMS). http://www.gams.com
    46. Vahidinasab V, Jadid S (2010) Stochastic multiobjective self-scheduling of a power producer in joint energy and reserves markets. Electr Power Syst Res 80(7): 760鈥?69 CrossRef
  • 作者单位:J. Aghaei (1)
    A. Ahmadi (2)
    H. A. Shayanfar (2)
    A. Rabiee (3)

    1. Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran
    2. Department of Electrical Engineering, Center of Excellence for Power System Automation and Operation, Iran University of Science and Technology, Tehran, Iran
    3. Department of Electrical Engineering, Faculty of Technology and Engineering, Shahrekord University, Shahrekord, Iran
  • ISSN:1432-0487
文摘
This paper presents the application of mixed-integer programming (MIP) approach for solving the hydro-thermal self scheduling (HTSS) problem of generating units. In the deregulated environment, the generation companies schedule their generators to maximize their profit while satisfying loads is not an obligation. The HTSS is a high dimensional mixed-integer optimization problem. Therefore, in the large-scale power systems, solving the HTSS is very difficult. In this paper, MIP formulation is adopted for precise modeling of dynamic ramp rate limits, prohibited operating zones, operating services, valve loading effects, variable fuel cost, non-linear start-up cost functions of thermal units, fuel and emission limits of thermal units, multi head power-discharge characteristics of hydro plants and spillage of reservoir. The modified IEEE 118-bus system is used to demonstrate the performance of the proposed method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700