Novel stand-alone RAM domain protein-mediated catalytic control of anthranilate phosphoribosyltransferase in tryptophan biosynthesis in Thermus thermophilus
详细信息    查看全文
文摘
Regulation of amino acid metabolism (RAM) domains are widely distributed among prokaryotes. In most cases, a RAM domain fuses with a DNA-binding domain to act as a transcriptional regulator. The extremely thermophilic bacterium, Thermus thermophilus, only carries a single gene encoding a RAM domain-containing protein on its genome. This protein is a stand-alone RAM domain protein (SraA) lacking a DNA-binding domain. Therefore, we hypothesized that SraA, which senses amino acids through its RAM domain, may interact with other proteins to modify its functions. In the present study, we identified anthranilate phosphoribosyltransferase (AnPRT), the second enzyme in the tryptophan biosynthetic pathway, as a partner protein that interacted with SraA in T. thermophilus. In the presence of tryptophan, SraA was assembled to a decamer and exhibited the ability to form a stable hetero-complex with AnPRT. An enzyme assay revealed that AnPRT was only inhibited by tryptophan in the presence of SraA. This result suggests a novel feedback control mechanism for tryptophan biosynthesis through an inter-RAM domain interaction in bacteria.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700