Effects of temperature on the transmission of Yersinia Pestis by the flea, Xenopsylla Cheopis, in the late phase period
详细信息    查看全文
  • 作者:Anna M Schotthoefer (1) (2)
    Scott W Bearden (1)
    Jennifer L Holmes (1)
    Sara M Vetter (1) (3)
    John A Montenieri (1)
    Shanna K Williams (1)
    Christine B Graham (1)
    Michael E Woods (1) (4)
    Rebecca J Eisen (1)
    Kenneth L Gage (1)
  • 关键词:Yersinia pestis ; Xenopsylla cheopis ; biofilm ; flea ; borne transmission ; temperature
  • 刊名:Parasites & Vectors
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:4
  • 期:1
  • 全文大小:605KB
  • 参考文献:1. Bacot AW, Martin CJ: The respective influences of temperature and moisture upon the survival of the rat flea ( Xenopsylla cheopis ) away from its host. / J Hyg 1924, 23:98-05. CrossRef
    2. Silverman J, Rust MK, Reierson DA: Influence of temperature and humidity on survival and development of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). / J Med Entomol 1981, 18:78-3.
    3. Lindsay LR, Galloway TD: Seasonal activity and temporal separation of four species of fleas (Insecta: Siphonaptera) infesting Richardson's ground squirrels, Spermophilus richardsonii (Rodentia: Sciuridae), in Manitoba, Canada. / Can J Zool 1997, 75:1310-322. CrossRef
    4. Gage KL, Burkot TR, Eisen RJ, Hayes EB: Climate and vectorborne diseases. / Am J Prev Med 2008, 35:436-50. CrossRef
    5. Lafferty KD: The ecology of climate change and infectious diseases. / Ecology 2009, 90:888-00. CrossRef
    6. Gage KL, Kosoy MY: Natural history of plague: perspectives from more than a century of research. / Annu Rev Entomol 2005, 50:505-28. CrossRef
    7. Bibikova VA: Contemporary views on the interrelationships between fleas and the pathogens of human and animal diseases. / Ann Rev of Entomology 1977, 22:23-2. CrossRef
    8. Hinnebusch BJ, Erickson DL: Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. / Curr Top Microbiol Immunol 2008, 322:229-48. CrossRef
    9. Bacot AW, Martin CJ: Observations on the mechanism of the transmission of plague by fleas. / J Hyg 1914,13(Plague Suppl III):423-39.
    10. Perry RD, Fetherston JD: Yersinia pestis --etiologic agent of plague. / Clinical Microbiology Reviews 1997, 10:35-6.
    11. Darby C, Hsu JW, Ghori N, Falkow S: Caenorhabditis elegans : plague bacteria biofilm blocks food intake. / Nature 2002, 417:243-44. CrossRef
    12. Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, Kobayashi SD, DeLeo FR, Hinnebusch BJ: Transmission of Yersinia pestis from an infectious biofilm in the flea vector. / J Infect Dis 2004, 190:783-92. CrossRef
    13. Haas GE: Temperature and humidity in the microhabitat of rodent fleas in Hawaiian cane fields. / J Med Entomol 1965, 2:313-16.
    14. George PV, Webster WJ: Plague inquiry in the Cumbum Valley, south India. / Ind J Med Research 1934, 22:77-04.
    15. Hinnebusch BJ, Fischer ER, Schwan TG: Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea. / J Infect Dis 1998, 178:1406-415. CrossRef
    16. Perry RD, Bobrov AG, Kirillina O, Jones HA, Pedersen L, Abney J, Fetherston JD: Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. / Journal of Bacteriology 2004, 186:1638-647. CrossRef
    17. Kartman L, Prince FM: Studies on Pasteurella pestis in fleas. V. The experimental plague-vector efficiency of wild rodent fleas compared with Xenopsylla cheopis , together with observations on the influence of temperature. / Am J Trop Med Hyg 1956, 5:1058-070.
    18. Kartman L: Effect of differences in ambient temperature upon the fate of Pasteurella pestis in Xenopsylla cheopis . / Trans R Soc Trop Med Hyg 1969, 63:71-5. CrossRef
    19. Collinge SK, Johnson WC, Ray C, Matchett R, Grensten J, Cully JF Jr, Gage KL, Kosoy MY, Loye JE, Martin AP: Testing the generality of a trophic-cascade model for plague. / Ecohealth 2005, 2:1-1. CrossRef
    20. Pollitzer R: / Plague. Geneva, Switzerland: World Health Organization; 1954.
    21. Cavanaugh DC, Marshall JD Jr: The influence of climate on the seasonal prevalence of plague in the Republic of Vietnam. / J Wildl Dis 1972, 8:85-4.
    22. Enscore RE, Biggerstaff BJ, Brown TL, Fulgham RF, Reynolds PJ, Engelthaler DM, Levy CE, Parmenter RR, Montenieri JA, Cheek JE, Grinnell RK, Ettestad PJ, Gage KL: Modeling relationships between climate and the frequency of human plague cases in the southwestern United States, 1960-997. / Am J Trop Med Hyg 2002, 66:186-96.
    23. Brown HE, Ettestad P, Reynolds PJ, Brown TL, Hatton ES, Holmes JL, Glass GE, Gage KL, Eisen RJ: Climatic predictors of the intra- and inter-annual distributions of plague cases in New Mexico based on 29 years of animal-based surveillance data. / Am J Trop Med Hyg 2010, 82:95-02. CrossRef
    24. Cavanaugh DC: Specific effect of temperature upon transmission of the plague bacillus by the oriental rat flea, Xenopsylla cheopis . / Am J Trop Med Hyg 1971, 20:264-73.
    25. Eisen RJ, Bearden SW, Wilder AP, Montenieri JA, Antolin MF, Gage KL: Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. / Proc Natl Acad Sci USA 2006, 103:15380-5385. CrossRef
    26. Schotthoefer AM, Bearden SW, Vetter SM, Holmes J, Montenieri JA, Graham CB, Woods ME, Eisen RJ, Gage KL: Effects of temperature on early-phase transmission of Yersinia pestis by the flea, Xenopsylla cheopis . / J Med Entomol 2011, 48:411-17. CrossRef
    27. Engelthaler DM, Hinnebusch BJ, Rittner CM, Gage KL: Quantitative competitive PCR as a technique for exploring flea- Yersina pestis dynamics. / Am J Trop Med Hyg 2000, 62:552-60.
    28. Lorange EA, Race BL, Sebbane F, Hinnebusch BJ: Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis . / J Infect Dis 2005, 191:1907-912. CrossRef
    29. Vadyvaloo V, Jarrett C, Sturdevant DE, Sebbane F, Hinnebusch BJ: Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis. / PLoS Pathog 2010, 6:e1000783. CrossRef
    30. Brooks RSJ: The influence of saturation deficiency and of temperature on the course of epidemic plague. / J Hyg Camb 1917, 15:881-99.
    31. Davis DH: Plague in Africa from 1935 to 1949: a survey of wild rodents in African territories. / Bull WHO 1953, 9:665-00.
    32. Douglas JR, Wheeler CM: Sylvatic plague studies, II. The fate of Pasteurella pests in the flea. / J Infect Dis 1943, 72:18-0. CrossRef
    33. Eskey CR, Haas VH: Plague in the western part of the United States. / Public Health Bulletin 1940, 254:1-3.
    34. Burroughs AL: Sylvatic plague studies: The vector efficiency of nine species of fleas compared with Xenopsylla cheopis . / J Hyg 1947, 43:371-96. CrossRef
    35. Eisen RJ, Wilder AP, Bearden SW, Montenieri JA, Gage KL: Early-phase transmission of Yersinia pestis by unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas. / J Med Entomol 2007, 44:678-82. CrossRef
    36. Wilder AP, Eisen RJ, Bearden SW, Montenieri JA, Tripp DW, Brinkerhoff BJ, Gage KL, Antolin MF: Transmission efficiency of two flea species ( Oropsylla tuberculata cynomuris and Oropsylla hirsuta ) involved in plague epizootics among prairie dogs. / Ecohealth 2008, 5:205-12. CrossRef
    37. Vetter SM, Eisen RJ, Schotthoefer AM, Montenieri JA, Holmes JL, Bobrov AG, Bearden SW, Perry RD, Gage KL: Biofilm formation is not required for early-phase transmission of Yersinia pestis . / Microbiology 2010, 156:2216-225. CrossRef
    38. Hinnebusch BJ, Perry RD, Schwan TG: Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. / Science 1996, 273:367-71. CrossRef
    39. Quan SF, Kartman L, McManus AG: Studies on Pasteurella pestis in fleas: II. Experimental blocking of Xenopsylla cheopis with an avirulent strain of P. pestis . / Science 1954, 120:1101-102. CrossRef
    40. Wheeler CM, Suyemoto W, Cavanaugh DC: Studies on Pasteurella pestis in various flea species, II. Simplified method for the experimental infection of fleas. / J Infect Dis 1956, 98:107-11. CrossRef
    41. Lorange EA, Race BL, Sebbane F, Hinnebusch BJ: Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis . / J Infect Dis 2005, 191:1907-912. CrossRef
    42. Han Y, Zhou D, Pang X, Zhang L, Song Y, Tong Z, Bao J, Dai E, Wang J, Guo Z, Zhai J, Du Z, Wang X, Huang P, Yang R: DNA microarray analysis of the heat- and cold-shock stimulons in Yersinia pestis . / Microbes Infect 2005, 7:335-48. CrossRef
    43. Anisimov AP, Dentovskaya SV, Titareva GM, Bakhteeva IV, Shaikhutdinova RZ, Balakhonov SV, Lindner B, Kocharova NA, Senchenkova SN, Holst O, Pier GB, Knirel YA: Intraspecies and temperature-dependent variations in susceptibility of Yersinia pestis to the bactericidal action of serum and to polymyxin B. / Infect Immun 2005, 73:7324-331. CrossRef
    44. Knirel YA, Lindner B, Vinogradov E, Shaikhutdinova RZ, Senchenkova SN, Kocharova NA, Holst O, Pier GB, Anisimov AP: Cold temperature-induced modifications to the composition and structure of the lipopolysaccharide of Yersinia pestis . / Carbohydr Res 2005, 340:1625-630. CrossRef
    45. Knirel YA, Lindner B, Vinogradov EV, Kocharova NA, Senchenkova SN, Shaikhutdinova RZ, Dentovskaya SV, Fursova NK, Bakhteeva IV, Titareva GM, Balakhonov SV, Holst O, Gremyakova TA, Pier GB, Anisimov AP: Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis . / Biochem 2005, 44:1731-743. CrossRef
    46. Eisen RJ, Vetter SM, Holmes JL, Bearden SW, Montenieri JA, Gage KL: Source of host blood affects prevalence of infection and bacterial loads of Yersinia pestis in fleas. / J Med Entomol 2008, 45:933-38. CrossRef
    47. Fielden LJ, Krasnov BR, Khokhlova IS, Arakelyan MS: Respiratory gas exchange in the desert flea Xenopsylla ramesis (Siphonaptera: Pulicidae): response to temperature and blood-feeding. / Comp Biochem Physiol A Mol Integr Physiol 2004, 137:557-65. CrossRef
    48. Sarfati M, Krasnov BR, Ghazaryan L, Khokhlova IS, Fielden LJ, Degen AA: Energy costs of blood digestion in a host-specific haematophagous parasite. / J Exp Biol 2005, 208:2489-496. CrossRef
    49. Buhnerkempe MG, Eisen RJ, Goodell B, Gage KL, Antolin MF, Webb CT: Transmission shifts underlie variability in population responses to Yersinia pestis infection. / PLoS One 2011, 6:e22498. CrossRef
    50. Eisen RJ, Eisen L, Gage KL: Studies of vector competency and efficiency of North American fleas for Yersinia pestis : state of the field and future research needs. / J Med Entomol 2009, 46:737-44. CrossRef
    51. Wheeler CM, Douglas JR: Sylvatic plague studies. V. The determination of vector efficiency. / J Infect Dis 1945, 77:1-2. CrossRef
    52. Kartman L: The concept of vector efficiency in experimental studies of plague. / Exp Parasitol 1957, 6:599-09. CrossRef
    53. Bacot AW: Further notes on the mechanism of the transmission of plague by fleas. / J Hyg 1915,14(Plague Suppl 4):774-76.
    54. Eisen RJ, Holmes JL, Schotthoefer AM, Vetter SM, Montenieri JA, Gage KL: Early-phase transmission of Yersinia pestis by cat fleas ( Ctenocephalides felis ) and their potential role as vectors in a plague-endemic region of Uganda. / Am J Trop Med Hyg 2008, 78:949-56.
    55. Winston PW, Bates DH: Saturated solutions for the control of humidity in biological research. / Ecology 1960, 41:232-37. CrossRef
    56. Chu MC: / Laboratory manual of plague diagnostics. Atlanta: Centers for Disease Control and Prevention; 2000.
    57. Hirst LF: On the transmission of plague by fleas of the genus Xenopsylla . 1922, 789-20.
    58. Biggerstaff BJ: / PooledInfRate, Version 3.0: a Microsoft Excel Add-In to compute prevalence estimates from pooled samples. Fort Collins: Centers for Disease Control and Prevention; 2006.
    59. Hinnebusch BJ, Gage KL, Schwan TG: Estimation of vector infectivity rates for plague by means of a standard curve-based competitive polymerase chain reaction method to quantify Yersinia pestis in fleas. / Am J Trop Med Hyg 1998, 58:562-69.
  • 作者单位:Anna M Schotthoefer (1) (2)
    Scott W Bearden (1)
    Jennifer L Holmes (1)
    Sara M Vetter (1) (3)
    John A Montenieri (1)
    Shanna K Williams (1)
    Christine B Graham (1)
    Michael E Woods (1) (4)
    Rebecca J Eisen (1)
    Kenneth L Gage (1)

    1. Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Emerging and Zoonotic, Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
    2. Marshfield Clinic Research Foundation, 1000 North Oak Avenue, Marshfield, WI, 54449, USA
    3. Minnesota Department of Health, P. O. Box 64975, St Paul, MN, 55164, USA
    4. Lawrence Livermore National Laboratory, 7000 East Avenue. L-174, Livermore, CA, 94550, USA
文摘
Background Traditionally, efficient flea-borne transmission of Yersinia pestis, the causative agent of plague, was thought to be dependent on a process referred to as blockage in which biofilm-mediated growth of the bacteria physically blocks the flea gut, leading to the regurgitation of contaminated blood into the host. This process was previously shown to be temperature-regulated, with blockage failing at temperatures approaching 30°C; however, the abilities of fleas to transmit infections at different temperatures had not been adequately assessed. We infected colony-reared fleas of Xenopsylla cheopis with a wild type strain of Y. pestis and maintained them at 10, 23, 27, or 30°C. Na?ve mice were exposed to groups of infected fleas beginning on day 7 post-infection (p.i.), and every 3-4 days thereafter until day 14 p.i. for fleas held at 10°C, or 28 days p.i. for fleas held at 23-30°C. Transmission was confirmed using Y. pestis-specific antigen or antibody detection assays on mouse tissues. Results Although no statistically significant differences in per flea transmission efficiencies were detected between 23 and 30°C, efficiencies were highest for fleas maintained at 23°C and they began to decline at 27 and 30°C by day 21 p.i. These declines coincided with declining median bacterial loads in fleas at 27 and 30°C. Survival and feeding rates of fleas also varied by temperature to suggest fleas at 27 and 30°C would be less likely to sustain transmission than fleas maintained at 23°C. Fleas held at 10°C transmitted Y. pestis infections, although flea survival was significantly reduced compared to that of uninfected fleas at this temperature. Median bacterial loads were significantly higher at 10°C than at the other temperatures. Conclusions Our results suggest that temperature does not significantly effect the per flea efficiency of Y. pestis transmission by X. cheopis, but that temperature is likely to influence the dynamics of Y. pestis flea-borne transmission, perhaps by affecting persistence of the bacteria in the flea gut or by influencing flea survival. Whether Y. pestis biofilm production is important for transmission at different temperatures remains unresolved, although our results support the hypothesis that blockage is not necessary for efficient transmission.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700