Exonization of active mouse L1s: a driver of transcriptome evolution?
详细信息    查看全文
  • 作者:Tomasz Zemojtel (1)
    Tobias Penzkofer (2)
    J?rg Schultz (2)
    Thomas Dandekar (2)
    Richard Badge (3)
    Martin Vingron (1)
  • 刊名:BMC Genomics
  • 出版年:2007
  • 出版时间:December 2007
  • 年:2007
  • 卷:8
  • 期:1
  • 全文大小:1385KB
  • 参考文献:1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ: Initial sequencing and analysis of the human genome. / Nature 2001, 409:860-21. CrossRef
    2. Goodier JL, Ostertag EM, Du K, Kazazian HH Jr.: A novel active L1 retrotransposon subfamily in the mouse. / Genome Res 2001, 11:1677-685. CrossRef
    3. Penzkofer T, Dandekar T, Zemojtel T: L1Base: from functional annotation to prediction of active LINE-1 elements. / Nucleic Acids Res 2005, 33:D498-00. CrossRef
    4. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr.: Hot L1s account for the bulk of retrotransposition in the human population. / Proc Natl Acad Sci U S A 2003, 100:5280-285. CrossRef
    5. DeBerardinis RJ, Goodier JL, Ostertag EM, Kazazian HH Jr.: Rapid amplification of a retrotransposon subfamily is evolving the mouse genome. / Nat Genet 1998, 20:288-90. CrossRef
    6. Han JS, Szak ST, Boeke JD: Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. / Nature 2004, 429:268-74. CrossRef
    7. Han JS, Boeke JD: LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? / Bioessays 2005, 27:775-84. CrossRef
    8. Matlik K, Redik K, Speek M: L1 antisense promoter drives tissue-specific transcription of human genes. / J Biomed Biotechnol 2006, 2006:71753.
    9. Speek M: Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. / Mol Cell Biol 2001, 21:1973-985. CrossRef
    10. Nigumann P, Redik K, Matlik K, Speek M: Many human genes are transcribed from the antisense promoter of L1 retrotransposon. / Genomics 2002, 79:628-34. CrossRef
    11. Perepelitsa-Belancio V, Deininger P: RNA truncation by premature polyadenylation attenuates human mobile element activity. / Nat Genet 2003, 35:363-66. CrossRef
    12. Narita N, Nishio H, Kitoh Y, Ishikawa Y, Minami R, Nakamura H, Matsuo M: Insertion of a 5' truncated L1 element into the 3' end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. / J Clin Invest 1993, 91:1862-867. CrossRef
    13. Nekrutenko A, Li WH: Transposable elements are found in a large number of human protein-coding genes. / Trends Genet 2001, 17:619-21. CrossRef
    14. Li WH, Gu Z, Wang H, Nekrutenko A: Evolutionary analyses of the human genome. / Nature 2001, 409:847-49. CrossRef
    15. Belancio VP, Hedges DJ, Deininger P: LINE-1 RNA splicing and influences on mammalian gene expression. / Nucleic Acids Res 2006, 34:1512-521. CrossRef
    16. Kim DS, Kim TH, Huh JW, Kim IC, Kim SW, Park HS, Kim HS: LINE FUSION GENES: a database of LINE expression in human genes. / BMC Genomics 2006, 7:139. CrossRef
    17. Perou CM, Pryor RJ, Naas TP, Kaplan J: The bg allele mutation is due to a LINE1 element retrotransposition. / Genomics 1997, 42:366-68. CrossRef
    18. L1Base [molgen.mpg.de" class="a-plus-plus">http://l1base.molgen.mpg.de]
    19. DeBerardinis RJ, Kazazian HH Jr.: Analysis of the promoter from an expanding mouse retrotransposon subfamily. / Genomics 1999, 56:317-23. CrossRef
    20. Brosius J: RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. / Gene 1999, 238:115-34. CrossRef
    21. Breathnach R, Chambon P: Organization and expression of eucaryotic split genes coding for proteins. / Annu Rev Biochem 1981, 50:349-83. CrossRef
    22. L1Exon [molgen.mpg.de/l1exon" class="a-plus-plus">http://l1base.molgen.mpg.de/l1exon]
    23. Sela N, Mersch B, Gal-Mark N, Lev-Maor G, Hotz-Wagenblatt A, Ast G: Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome. / Genome Biol 2007, 8:R127. CrossRef
    24. Wheelan SJ, Aizawa Y, Han JS, Boeke JD: Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. / Genome Res 2005, 15:1073-078. CrossRef
    25. Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann AR, Hofmann K, Dikic I: Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. / Science 2005, 310:1821-824. CrossRef
    26. Krull M, Brosius J, Schmitz J: Alu-SINE exonization: en route to protein-coding function. / Mol Biol Evol 2005, 22:1702-711. molbev/msi164">CrossRef
    27. Krull M, Petrusma M, Makalowski W, Brosius J, Schmitz J: Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). / Genome Res 2007.
    28. Hayashi Y, Sakata H, Makino Y, Urabe I, Yomo T: Can an arbitrary sequence evolve towards acquiring a biological function? / J Mol Evol 2003, 56:162-68. CrossRef
    29. Fellenberg F, Hartmann TB, Dummer R, Usener D, Schadendorf D, Eichmuller S: GBP-5 splicing variants: New guanylate-binding proteins with tumor-associated expression and antigenicity. / J Invest Dermatol 2004, 122:1510-517. CrossRef
    30. Nguyen TT, Hu Y, Widney DP, Mar RA, Smith JB: Murine GBP-5, a new member of the murine guanylate-binding protein family, is coordinately regulated with other GBPs in vivo and in vitro. / J Interferon Cytokine Res 2002, 22:899-09. CrossRef
    31. Yeo G, Hoon S, Venkatesh B, Burge CB: Variation in sequence and organization of splicing regulatory elements in vertebrate genes. / Proc Natl Acad Sci U S A 2004, 101:15700-5705. CrossRef
    32. Chen J, Rattner A, Nathans J: Effects of L1 retrotransposon insertion on transcript processing, localization and accumulation: lessons from the retinal degeneration 7 mouse and implications for the genomic ecology of L1 elements. / Hum Mol Genet 2006, 15:2146-156. mg/ddl138">CrossRef
    33. Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV: Human L1 retrotransposition: cis preference versus trans complementation. / Mol Cell Biol 2001, 21:1429-439. CrossRef
    34. Maeda N, Kasukawa T, Oyama R, Gough J, Frith M, Engstrom PG, Lenhard B, Aturaliya RN, Batalov S, Beisel KW, Bult CJ, Fletcher CF, Forrest AR, Furuno M, Hill D, Itoh M, Kanamori-Katayama M, Katayama S, Katoh M, Kawashima T, Quackenbush J, Ravasi T, Ring BZ, Shibata K, Sugiura K, Takenaka Y, Teasdale RD, Wells CA, Zhu Y, Kai C, Kawai J, Hume DA, Carninci P, Hayashizaki Y: Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. / PLoS Genet 2006, 2:e62. CrossRef
    35. Kent WJ: BLAT--the BLAST-like alignment tool. / Genome Res 2002, 12:656-64.
    36. Birney E, Andrews D, Caccamo M, Chen Y, Clarke L, Coates G, Cox T, Cunningham F, Curwen V, Cutts T, Down T, Durbin R, Fernandez-Suarez XM, Flicek P, Graf S, Hammond M, Herrero J, Howe K, Iyer V, Jekosch K, Kahari A, Kasprzyk A, Keefe D, Kokocinski F, Kulesha E, London D, Longden I, Melsopp C, Meidl P, Overduin B, Parker A, Proctor G, Prlic A, Rae M, Rios D, Redmond S, Schuster M, Sealy I, Searle S, Severin J, Slater G, Smedley D, Smith J, Stabenau A, Stalker J, Trevanion S, Ureta-Vidal A, Vogel J, White S, Woodwark C, Hubbard TJ: Ensembl 2006. / Nucleic Acids Res 2006, 34:D556-1. CrossRef
    37. NCBI Nucleotide Database [m.nih.gov" class="a-plus-plus">http://www.ncbi.nlm.nih.gov]
    38. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Ostell J, Miller V, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, Yaschenko E: Database resources of the National Center for Biotechnology Information. / Nucleic Acids Res 2007, 35:D5-2. CrossRef
    39. Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. / Trends Genet 2000, 16:276-77. CrossRef
    40. Schichman SA, Adey NB, Edgell MH, Hutchison CA 3rd: L1 A-monomer tandem arrays have expanded during the course of mouse L1 evolution. / Mol Biol Evol 1993, 10:552-70.
    41. PHP [http://www.php.net]
    42. MySQL [mysql.com" class="a-plus-plus">http://www.mysql.com]
    43. Eddy SR: Multiple alignment using hidden Markov models. / Proc Int Conf Intell Syst Mol Biol 1995, 3:114-20.
  • 作者单位:Tomasz Zemojtel (1)
    Tobias Penzkofer (2)
    J?rg Schultz (2)
    Thomas Dandekar (2)
    Richard Badge (3)
    Martin Vingron (1)

    1. Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, D-14195, Berlin, Germany
    2. Department of Bioinformatics, University of Würzburg, D-97074, Am Hubland, Würzburg, Germany
    3. Department of Genetics, University of Leicester, University Road, LE1 7RH, Leicester, UK
文摘
Background Long interspersed nuclear elements (LINE-1s, L1s) have been recently implicated in the regulation of mammalian transcriptomes. Results Here, we show that members of the three active mouse L1 subfamilies (A, GF and TF) contain, in addition to those on their sense strands, conserved functional splice sites on their antisense strands, which trigger multiple exonization events. The latter is particularly intriguing in the light of the strong antisense orientation bias of intronic L1s, implying that the toleration of antisense insertions results in an increased potential for exonization. Conclusion In a genome-wide analysis, we have uncovered evidence suggesting that the mobility of the large number of retrotransposition-competent mouse L1s (~2400 potentially active L1s in NCBIm35) has significant potential to shape the mouse transcriptome by continuously generating insertions into transcriptional units.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700