Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm
详细信息    查看全文
  • 作者:Shan Cheng ; Min-you Chen ; Rong-jong Wai&#8230
  • 关键词:Distributed generation ; Multi ; objective particle swarm optimization ; Optimal placement ; Voltage stability index ; Power loss ; TM715
  • 刊名:Frontiers of Information Technology & Electronic Engineering
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:15
  • 期:4
  • 页码:300-311
  • 全文大小:996 KB
  • 参考文献:Abu-Mouti, F.S., El-Hawary, M.E., 2011. Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm. IEEE Trans. Power Del., 26(4):2090鈥?101. [doi:10.1109/TPWRD.2011.2158246]CrossRef
    Akorede, M.F., Hizam, H., Aris, I., et al., 2011. Effective method for optimal allocation of distributed generation units in meshed electric power systems. IET Gener. Transm. Distr., 5(2):276鈥?87. [doi:10.1049/iet-gtd.2010.0199]CrossRef
    Atwa, Y.M., El-Saadany, E.F., Salama, M.M.A., et al., 2010. Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans. Power Syst., 25(1):360鈥?70. [doi:10.1109/TPWRS.2009.2030276]CrossRef
    Ayres, H.M., Freitas, W., de Almeida, et al., 2010. Method for determining the maximum allowable penetration level of distributed generation without steady-state voltage violations. IET Gener. Transm. Distr., 4(4):495鈥?08. [doi:10. 1049/iet-gtd.2009.0317]CrossRef
    Baran, M.E., Wu, F.F., 1989. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Del., 4(2):1401鈥?407. [doi:10.1109/61.25627]CrossRef
    Chen, M.Y., Cheng, S., 2012. Multi-objective optimization of the allocation of DG units considering technical, economical and environmental attributes. Przeglad Elektrotechnizny, 88(12A):233鈥?37.MathSciNet
    Chen, M.Y., Zhang, C.Y., Luo, C.Y., 2009. Adaptive evolutionary multi-objective particle swarm optimization algorithm. Contr. Dec., 24(12):1851鈥?855 (in Chinese).MATH MathSciNet
    Coello, C.A.C., Pulido, G.T., Lechuga, M.S., 2004. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput., 8(3):256鈥?79. [doi:10.1109/TEVC.2004.826067]CrossRef
    Deb, K., 2001. Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York, USA, p.7.MATH
    Deb, K., Pratap, A., Agarwal, S., et al., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 6(2):182鈥?97. [doi:10.1109/4235.996017]CrossRef
    Dehghanian, P., Hosseini, S.H., Moeini-Aghtaie, M., et al., 2013. Optimal siting of DG Units in power systems from a probabilistic multi-objective optimization perspective. Int. J. Electr. Power Energy Syst., 51(10):14鈥?6. [doi:10.1016/j.ijepes.2013.02.014]CrossRef
    Devi, S., Geethanjali, M., 2013. Application of modified bacterial foraging optimization algorithm for optimal placement and sizing of distributed generation. Expert Syst. Appl., 41(6):2772鈥?781. [doi:10.1016/j.eswa.2013.10.010]CrossRef
    Gopiya Naik, S., Khatod, D.K., Sharma, M.P., 2013. Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks. Int. J. Electr. Power Energy Syst., 53(12):967鈥?73. [doi:10.1016/j.ijepes.2013.06.008]CrossRef
    Hu, G.H., He, W., Cheng, S., et al., 2013. Optimal allocation of distributed generation units considering environmental effects. J. Inf. Comput. Sci., 10(11):3353鈥?362. [doi:10.12733/jics20101937]CrossRef
    Jia, S.J., Du, B., Yue, H., 2012. Local search and hybrid diversity strategy based multi-objective particle swarm optimization algorithm. Contr. Dec., 27(6):813鈥?18 (in Chinese).
    Kumar, K.V., Selvan, M.P., 2009. Planning and operation of distributed generations in distribution systems for improved voltage profile. Power Systems Conf. and Exposition, p.1鈥?. [doi:10.1109/PSCE.2009.4840152]
    Lee, S.H., Park, J.W., 2009. Selection of optimal location and size of multiple distributed generations by using Kalman filter algorithm. IEEE Trans. Power Syst., 24(3):1393鈥?400. [doi:10.1109/TPWRS.2009.2016540]CrossRef
    Li, X.D., 2003. A non-dominated sorting particle swarm optimizer for multiobjective optimization. LNCS, 2723: 27鈥?8. [doi:10.1007/3-540-45105-6_4]
    Li, Y., Zhou, B.X., Lin, N., et al., 2013. Application of improved clonal genetic algorithm in distributed generation planning. Proc. CSU-EPSA, 25(4):128鈥?32 (in Chinese).
    Liu, J., Bi, P.X., Dong, H.P., 2002. Analysis and Optimization of Complex Distribution Networks. China Electric Power Press, Beijing, China, p.140 (in Chinese).
    Mistry, K.D., Roy, R., 2014. Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth. Int. J. Electr. Power Energy Syst., 54(1): 505鈥?15. [doi:10.1016/j.ijepes.2013.07.032]CrossRef
    Moradi, M.H., Abedini, M., 2012. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst., 34(1):66鈥?4. [doi:10.1016/j.ijepes.2011.08.023]CrossRef
    Ratnaweera, A., Halgamuge, S.K., Watson, H.C., 2004. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput., 8(3):240鈥?55. [doi:10.1109/TEVC.2004.826071]CrossRef
    Sheng, W.X., Liu, Y.M., Meng, X.L., et al., 2012. An improved strength Pareto evolutionary algorithm 2 with application to the optimization of distributed generations. Comput. Math. Appl., 64(5):944鈥?55. [doi:10.1016/j.camwa.2012.01.063]CrossRef
    Sierra, M.R., Coello, C.A.C., 2006. Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res., 2(3):287鈥?08.MathSciNet
    Tanaka, K., Oshiro, M., Toma, S., et al., 2010. Decentralised control of voltage in distribution systems by distributed generators. IET Gener. Transm. Distr., 4(11):1251鈥?260. [doi:10.1049/iet-gtd.2010.0003]CrossRef
    Yu, Q., Liu, G., Liu, Z.F., et al., 2013. Multi-objective optimal planning of distributed generation based on quantum differential evolution algorithm. Power Syst. Protect. Contr., 41(14):66鈥?2 (in Chinese).
  • 作者单位:Shan Cheng (1)
    Min-you Chen (2)
    Rong-jong Wai (3)
    Fang-zong Wang (1)

    1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, 443002, China
    2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing, 400044, China
    3. Department of Electrical Engineering and Fuel Cell Center, Yuan Ze University, Taiwan, 32003, Chung Li
  • 刊物类别:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization
  • 刊物主题:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization and Communication Networks; Electronics and Microelectronics, Instrumentation; Communications Engine
  • 出版者:Zhejiang University Press
  • ISSN:2095-9230
文摘
This paper deals with the optimal placement of distributed generation (DG) units in distribution systems via an enhanced multi-objective particle swarm optimization (EMOPSO) algorithm. To pursue a better simulation of the reality and provide the designer with diverse alternative options, a multi-objective optimization model with technical and operational constraints is constructed to minimize the total power loss and the voltage fluctuation of the power system simultaneously. To enhance the convergence of MOPSO, special techniques including a dynamic inertia weight and acceleration coefficients have been integrated as well as a mutation operator. Besides, to promote the diversity of Pareto-optimal solutions, an improved non-dominated crowding distance sorting technique has been introduced and applied to the selection of particles for the next iteration. After verifying its effectiveness and competitiveness with a set of well-known benchmark functions, the EMOPSO algorithm is employed to achieve the optimal placement of DG units in the IEEE 33-bus system. Simulation results indicate that the EMOPSO algorithm enables the identification of a set of Pareto-optimal solutions with good tradeoff between power loss and voltage stability. Compared with other representative methods, the present results reveal the advantages of optimizing capacities and locations of DG units simultaneously, and exemplify the validity of the EMOPSO algorithm applied for optimally placing DG units. Key words Distributed generation Multi-objective particle swarm optimization Optimal placement Voltage stability index Power loss

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700