Lime Pretreatment and Fermentation of Enzymatically Hydrolyzed Sugarcane Bagasse
详细信息    查看全文
  • 作者:Sarita C. Rabelo (1) (2)
    Rubens Maciel Filho (1)
    Aline C. Costa (1)
  • 关键词:Lignocellulosic ; Pretreatment ; Lime ; Enzymatic hydrolysis ; Ethanol
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:169
  • 期:5
  • 页码:1696-1712
  • 全文大小:688KB
  • 参考文献:1. UNICA (Sao Paulo Sugarcane Agroindustry Union). (2012). Available at: <a class="a-plus-plus" href="http://www.unica.com.br/noticias/show.asp?nwsCode=EB4B5586-5F2B-4F1A-888B-418400C2F215">http://www.unica.com.br/noticias/show.asp?nwsCode=EB4B5586-5F2B-4F1A-888B-418400C2F215a>. Last accessed: 25 Sep 2012.
    2. Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). / Biotechnology Advances, 29, 675-85. <a class="external" href="http://dx.doi.org/10.1016/j.biotechadv.2011.05.005">CrossRefa>
    3. Rabelo, S. C., Maciel Filho, R., & Costa, A. C. (2009). / Applied Biochemistry and Biotechnology, 153, 139-50. <a class="external" href="http://dx.doi.org/10.1007/s12010-008-8433-7">CrossRefa>
    4. Fuentes, L. L. G., Rabelo, S. C., Maciel Filho, R., & Costa, A. C. (2011). / Applied Biochemistry and Biotechnology, 163, 612-25. <a class="external" href="http://dx.doi.org/10.1007/s12010-010-9067-0">CrossRefa>
    5. Falls, M., & Holtzapple, M. T. (2011). / Applied Biochemistry and Biotechnology, 165, 506-22. <a class="external" href="http://dx.doi.org/10.1007/s12010-011-9271-6">CrossRefa>
    6. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008a). NREL/TP-510-42618. Golden: National Renewable Energy Laboratory.
    7. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. (2008b). TP-510-42623. Golden: National Renewable Energy Laboratory.
    8. Ghose, T. K. (1987). / Pure and Applied Chemistry, 59, 257-68. <a class="external" href="http://dx.doi.org/10.1351/pac198759020257">CrossRefa>
    9. Wood, T. M., & Bhat, K. M. (1988). In W. A. Wood & S. T. Kellog (Eds.), / Methods in enzymology. Methods for measuring cellulase activities (Vol. 1, pp. 81-12). San Diego: Academic.
    10. Jacobsen, S. E., & Wyman, C. E. (2002). / Industrial and Engineering Chemistry Research, 41, 1454-461. <a class="external" href="http://dx.doi.org/10.1021/ie001025+">CrossRefa>
    11. Vidal, B. C., Jr., Dien, B. S., Ting, K. C., & Singh, V. (2011). / Applied Biochemistry and Biotechnology, 164, 1405-421. <a class="external" href="http://dx.doi.org/10.1007/s12010-011-9221-3">CrossRefa>
    12. Rabelo, S. C., Maciel Filho, R., & Costa, A. C. (2008). / Applied Biochemistry and Biotechnology, 144, 87-00. <a class="external" href="http://dx.doi.org/10.1007/s12010-007-8086-y">CrossRefa>
    13. Rocha, G. J. M., Martín, C., Silva, V. F. N., Gómez, E. O., & Gon?alves, A. R. (2012). / Bioresource Technology, 111, 447-52. <a class="external" href="http://dx.doi.org/10.1016/j.biortech.2012.02.005">CrossRefa>
    14. Bommarius, A. S., Katona, A., Cheben, S. E., Patel, A. S., Ragauskas, A. J., Knudson, K., et al. (2008). / Metabolic Engineering, 10, 370-81. <a class="external" href="http://dx.doi.org/10.1016/j.ymben.2008.06.008">CrossRefa>
    15. Sindhu, R., Kuttiraja, M., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011). / Bioresource Technology, 102(23), 10915-0921. <a class="external" href="http://dx.doi.org/10.1016/j.biortech.2011.09.066">CrossRefa>
    16. Rivera, E. C., Rabelo, S. C., Garcia, D. R., Maciel Filho, R., & Costa, A. C. (2010). / Journal of Chemical Technology and Biotechnology, 85, 983-92. <a class="external" href="http://dx.doi.org/10.1002/jctb.2391">CrossRefa>
    17. Rabelo, S. C., Carrere, H., Maciel Filho, R., & Costa, A. C. (2011). / Bioresource Technology, 102, 7887-895. <a class="external" href="http://dx.doi.org/10.1016/j.biortech.2011.05.081">CrossRefa>
    18. Chauve, M., Mathis, H., Huc, D., Casanave, D., Monot, F., & Ferreira, N. L. (2010). / Biotechnology Biofuels, 3(1), 3. <a class="external" href="http://dx.doi.org/10.1186/1754-6834-3-3">CrossRefa>
    19. Shen, F., Zhong, Y., Saddler, J. N., & Liu, R. (2011). / Applied Biochemistry and Biotechnology, 165, 1024-036. <a class="external" href="http://dx.doi.org/10.1007/s12010-011-9317-9">CrossRefa>
    20. Wang, W., Kang, L., Wei, H., Arora, R., & Lee, Y. Y. (2011). / Applied Biochemistry and Biotechnology, 164, 1139-149. <a class="external" href="http://dx.doi.org/10.1007/s12010-011-9200-8">CrossRefa>
    21. Kristensen, J. B., Felby, C., & J?rgensen, H. (2009). / Biotechnology Biofuels, 2(1), 11. <a class="external" href="http://dx.doi.org/10.1186/1754-6834-2-11">CrossRefa>
    22. Xue, Y., Jameel, H., Phillips, R., & Chang, H. (2012). / Journal of Industrial and Engineering Chemistry, 18, 707-14. <a class="external" href="http://dx.doi.org/10.1016/j.jiec.2011.11.132">CrossRefa>
    23. Yang, J., Zhang, X., Yong, Q., & Shiyuan, Y. (2011). / Bioresource Technology, 102, 4905-908. <a class="external" href="http://dx.doi.org/10.1016/j.biortech.2010.12.047">CrossRefa>
    24. Clark, T., & Mackie, K. L. (1984). / Journal of Chemical and Biotechnology, 34, 101-10. <a class="external" href="http://dx.doi.org/10.1002/jctb.280340206">CrossRefa>
    25. Heipieper, H. J., Weber, F. J., Sikkema, J., Keweloh, H., & Bont, J. A. M. (1994). / Trends in Biotechnology, 12(10), 409-15. <a class="external" href="http://dx.doi.org/10.1016/0167-7799(94)90029-9">CrossRefa>
    26. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). / Applied Microbiology and Biotechnology, 66, 10-6. <a class="external" href="http://dx.doi.org/10.1007/s00253-004-1642-2">CrossRefa>
    27. Olsson, L., & Hahn-H?gerdal, B. (1996). / Enzyme and Microbial Technology, 18, 312-31. <a class="external" href="http://dx.doi.org/10.1016/0141-0229(95)00157-3">CrossRefa>
    28. Pierre, G., Maache-Rezzoug, Z., Sanniera, F., Rezzougb, S. A., & Maugarda, T. (2011). / Process Biochemistry, 46, 2194-200. <a class="external" href="http://dx.doi.org/10.1016/j.procbio.2011.09.002">CrossRefa>
    29. Conde-Mejíaa, C., Jiménez-Gutiérreza, A., & El-Halwagi, M. (2012). / Process Safety and Environmental Protection, 90, 189-02. <a class="external" href="http://dx.doi.org/10.1016/j.psep.2011.08.004">CrossRefa>
  • 作者单位:Sarita C. Rabelo (1) (2)
    Rubens Maciel Filho (1)
    Aline C. Costa (1)

    1. School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13083-970, Campinas, S?o Paulo, Brazil
    2. Laboratório Nacional de Ciência e Tecnologia do Bioetanol -CTBE/CNPEM, Caixa Postal 6170, 13083-970, Campinas, S?o Paulo, Brazil
  • ISSN:1559-0291
文摘
Sugarcane bagasse was subjected to lime (calcium hydroxide) pretreatment and enzymatic hydrolysis for second-generation ethanol production. A central composite factorial design was performed to determine the best combination of pretreatment time, temperature, and lime loading, as well as to evaluate the influence of enzymatic loadings on hydrolysis conversion. The influence of increasing solids loading in the pretreatment and enzymatic hydrolysis stages was also determined. The hydrolysate was fermented using Saccharomyces cerevisiae in batch and continuous mode. In the continuous fermentation, the hydrolysates were concentrated with molasses. Lime pretreatment significantly increased the enzymatic digestibility of sugarcane bagasse without the need for prior particle size reduction. In the optimal pretreatment conditions (90?h, 90?°C, 0.47?g?lime/g bagasse) and industrially realistic conditions of hydrolysis (12.7?FPU/g of cellulase and 7.3?CBU/g of β-glucosidase), 139.6?kg?lignin/ton raw bagasse and 126.0?kg hemicellulose in the pretreatment liquor per ton raw bagasse were obtained. The hydrolysate from lime pretreated sugarcane bagasse presented low amounts of inhibitors, leading to ethanol yield of 164.1?kg?ethanol/ton raw bagasse.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700