Possible association between common variants of the phenylalanine hydroxylase (PAH) gene and memory performance in healthy adults
详细信息    查看全文
  • 作者:Toshiya Teraishi (1)
    Daimei Sasayama (1)
    Hiroaki Hori (1)
    Noriko Yamamoto (1)
    Takashi Fujii (1)
    Junko Matsuo (1)
    Anna Nagashima (1)
    Yukiko Kinoshita (1)
    Kotaro Hattori (1)
    Miho Ota (1)
    Sayaka Fujii (1)
    Hiroshi Kunugi (1)
  • 关键词:Genetic polymorphism ; Phenylalanine hydroxylase ; Verbal memory ; Wechsler Memory Scale ; Revised (WMS ; R) ; Association study
  • 刊名:Behavioral and Brain Functions
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:9
  • 期:1
  • 全文大小:245KB
  • 参考文献:1. van Bokhoven H: Genetic and epigenetic networks in intellectual disabilities. / Annu Rev Genet 2011, 45:81-04. CrossRef
    2. McClearn GE, Johansson B, Berg S, Pedersen NL, Ahern F, Petrill SA, Plomin R: Substantial genetic influence on cognitive abilities in twins 80 or more years old. / Science 1997,276(5318):1560-563. CrossRef
    3. Berger-Sweeney J: Cognitive deficits in Rett syndrome: what we know and what we need to know to treat them. / Neurobiol Learn Mem 2011,96(4):637-46. CrossRef
    4. Surtees R, Blau N: The neurochemistry of phenylketonuria. / Eur J Pediatr 2000,159(Suppl 2):S109-S113. CrossRef
    5. Erlandsen H, Stevens RC: The structural basis of phenylketonuria. / Mol Genet Metab 1999,68(2):103-25. CrossRef
    6. Scriver CR: The PAH gene, phenylketonuria, and a paradigm shift. / Hum Mutat 2007,28(9):831-45. CrossRef
    7. Talkowski ME, McClain L, Allen T, Bradford LD, Calkins M, Edwards N, Georgieva L, Go R, Gur R, Kirov G, / et al.: Convergent patterns of association between phenylalanine hydroxylase variants and schizophrenia in four independent samples. / Am J Med Genet B Neuropsychiatr Genet 2009,150B(4):560-69. CrossRef
    8. Richardson MA, Guttler F, Guldberg P, Reilly M, Suckow R, Read L, Clelland J, Chao H, Clelland J: Phenylalanine hydroxylase gene mutation associated with schizophrenia and African-American ethnic status. / Schizophr Res 1999, 36:95.
    9. Saykin AJ, Gur RC, Gur RE, Mozley PD, Mozley LH, Resnick SM, Kester DB, Stafiniak P: Neuropsychological function in schizophrenia. / Selective impairment in memory and learning. Arch Gen Psychiatry 1991,48(7):618-24. CrossRef
    10. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC: The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. / J Clin Psychiatry 1998,59(20):22-3-4-7.
    11. Otsubo T, Tanaka K, Koda R, Shinoda J, Sano N, Tanaka S, Aoyama H, Mimura M, Kamijima K: Reliability and validity of Japanese version of the Mini-International Neuropsychiatric Interview. / Psychiatry Clin Neurosci 2005,59(5):517-26. CrossRef
    12. American Psychiatric Association: / DSM-IV: Diagnostic and Statistical Manual of Mental Disorders. 4. Washington D.C: American Psychiatric Press; 1994.
    13. Wechsler D: / Wechsler Memory Scale-Revised. San Antonio: Psychological Corp; 1981.
    14. Sugishita M: / Japanese Wechsler Memory Scale-Revised. Tokyo: Nihonbunkakagakusha; 2001.
    15. Hori H, Noguchi H, Hashimoto R, Nakabayashi T, Omori M, Takahashi S, Tsukue R, Anami K, Hirabayashi N, Harada S, / et al.: Antipsychotic medication and cognitive function in schizophrenia. / Schizophr Res 2006,86(1-):138-46. CrossRef
    16. Hori H, Yamamoto N, Fujii T, Teraishi T, Sasayama D, Matsuo J, Kawamoto Y, Kinoshita Y, Ota M, Hattori K, / et al.: Effects of the CACNA1C risk allele on neurocognition in patients with schizophrenia and healthy individuals. / Sci Rep 2012, 2:634. CrossRef
    17. Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. / Bioinformatics 2005,21(2):263-65. CrossRef
    18. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, / et al.: The structure of haplotype blocks in the human genome. / Science 2002,296(5576):2225-229. CrossRef
    19. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, / et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. / Am J Hum Genet 2007,81(3):559-75. CrossRef
    20. Faul F, Erdfelder E, Lang AG, Buchner A: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. / Behav Res Methods 2007,39(2):175-91. CrossRef
    21. Aoki K, Wada Y: Outcome of the patients detected by newborn screening in Japan. / Acta Paediatr Jpn 1988,30(4):429-34. CrossRef
    22. Wada Y, Nakajima H, Irie M, Hirayama M, Suwa S: Newborn mass screening in Japan-984. / Jinrui Idengaku Zasshi 1984,29(3):277-86. CrossRef
    23. White DA, Nortz MJ, Mandernach T, Huntington K, Steiner RD: Age-related working memory impairments in children with prefrontal dysfunction associated with phenylketonuria. / J Int Neuropsychol Soc 2002,8(1):1-1. CrossRef
    24. Channon S, German E, Cassina C, Lee P: Executive functioning, memory, and learning in phenylketonuria. / Neuropsychology 2004,18(4):613-20. CrossRef
    25. Zagreda L, Goodman J, Druin DP, McDonald D, Diamond A: Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation. / J Neurosci 1999,19(14):6175-182.
    26. Joseph B, Dyer CA: Relationship between myelin production and dopamine synthesis in the PKU mouse brain. / J Neurochem 2003,86(3):615-26. CrossRef
    27. Ogawa S, Ichinose H: Effect of metals and phenylalanine on the activity of human tryptophan hydroxylase-2: comparison with that on tyrosine hydroxylase activity. / Neurosci Lett 2006,401(3):261-65. CrossRef
    28. Chowdhury R, Guitart-Masip M, Bunzeck N, Dolan RJ, Düzel E: Dopamine modulates episodic memory persistence in old age. / J Neurosci 2012,32(41):14193-4204. CrossRef
    29. McKean CM: The effects of high phenylalanine concentrations on serotonin and catecholamine metabolism in the human brain. / Brain Res 1972,47(2):469-76. CrossRef
    30. Burlina AB, Bonafé L, Ferrari V, Suppiej A, Zacchello F, Burlina AP: Measurement of neurotransmitter metabolites in the cerebrospinal fluid of phenylketonuric patients under dietary treatment. / J Inherit Metab Dis 2000,23(4):313-16. CrossRef
    31. de Groot MJ, Hoeksma M, Blau N, Reijngoud DJ, van Spronsen FJ: Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. / Mol Genet Metab 2010,99(Suppl 1):S86-S89. CrossRef
    32. Krach S, Jansen A, Krug A, Markov V, Thimm M, Sheldrick AJ, Eggermann T, Zerres K, St?cker T, Shah NJ, / et al.: COMT genotype and its role on hippocampal-prefrontal regions in declarative memory. / NeuroImage 2010,53(3):978-84. CrossRef
    33. Giakoumaki SG, Roussos P, Bitsios P: Improvement of prepulse inhibition and executive function by the COMT inhibitor tolcapone depends on COMT Val158Met polymorphism. / Neuropsychopharmacology 2008,33(13):3058-068. CrossRef
    34. Enge S, Fleischhauer M, Lesch KP, Reif A, Strobel A: Serotonergic modulation in executive functioning: linking genetic variations to working memory performance. / Neuropsychologia 2011,49(13):3776-785. CrossRef
  • 作者单位:Toshiya Teraishi (1)
    Daimei Sasayama (1)
    Hiroaki Hori (1)
    Noriko Yamamoto (1)
    Takashi Fujii (1)
    Junko Matsuo (1)
    Anna Nagashima (1)
    Yukiko Kinoshita (1)
    Kotaro Hattori (1)
    Miho Ota (1)
    Sayaka Fujii (1)
    Hiroshi Kunugi (1)

    1. Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
  • ISSN:1744-9081
文摘
Background Phenylalanine hydroxylase (PAH) is the enzyme that metabolizes phenylalanine, an essential amino acid required for catecholamine synthesis. Rare mutations in PAH are causal to phenylketonuria (PKU), an autosomal recessive disease characterized by neuropsychiatric symptoms including intellectual disability. We examined whether there is an association between common single nucleotide polymorphisms (SNPs) of PAH and memory performance in the Japanese population. Methods Subjects were 599 healthy adults (166 males and 433 females; mean age 43.8?±-5.5?years). The Wechsler Memory Scale-Revised (WMS-R) was administered to all participants to assess memory performance. Genotyping was performed for 6 selected tagging SNPs of PAH (rs1722387, rs3817446, rs1718301, rs2037639, rs10860936 and rs11111419). Results Analyses of covariance controlling for sex and education years, indicated a significant association between a SNP (rs2037639) and age-corrected verbal memory index of WMS-R (nominal p--.0013) which remained significant after correction for multiple testing ( p--.0013-lt;-.0017--.05/30tests). Individuals with the GG genotype showed a significantly lower mean verbal memory score, compared with those individuals carrying the AA/AG genotype (106.0?±-6.0 vs. 111.7?±-3.4; p--.00099). A haplotype block containing two markers of rs2037639 and rs10860936 was associated with verbal memory index (permutation global p--.0091). Conclusions Our findings suggest that common genetic variations in PAH are associated with verbal memory in healthy adults. Unknown functional polymorphisms in PAH or those in other genes nearby might affect memory performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700