Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation
详细信息    查看全文
  • 作者:Adrian Czaban (1)
    Sapna Sharma (2)
    Stephen L Byrne (1)
    Manuel Spannagl (2)
    Klaus FX Mayer (2)
    Torben Asp (1)

    1. Department of Molecular Biology and Genetics
    ; Aarhus University ; Fors酶gsvej 1 ; Slagelse ; 4200 ; Denmark
    2. Plant Genome and Systems Biology
    ; Helmholtz Zentrum M眉nchen ; German Research Center for Environmental Health ; Ingolst盲dter Landstrasse 1 ; Neuherberg ; 85764 ; Germany
  • 关键词:Lolium ; Festuca complex ; RNAseq ; Comparative transcriptomics ; Gene families
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:1,664 KB
  • 参考文献:1. Strickler, SR, Bombarely, A, Mueller, LA (2012) Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Am J Bot 99: pp. 257-66 CrossRef
    2. Thomas, H, Humphreys, MO (1991) Progress and potential of interspecific hybrids of lolium and festuca. J Agr Sci 117: pp. 1-8 CrossRef
    3. Xu, WW, Sleper, DA, Chao, S (1992) Detection of rflps in perennial ryegrass, using heterologous probes from tall fescue. Crop Sci. 32: pp. 1366-70 CrossRef
    4. Bulinska-Radomska, Z, Lester, RN (1988) Intergeneric relationships oflolium, festuca, andvulpia (poaceae) and their phylogeny. Plant Systemat Evol 159: pp. 217-27 CrossRef
    5. Charmet, G, Ravel, C, Balfourier, F (1997) Phylogenetic analysis in the festuca-lolium complex using molecular markers and its rdna. Theor Appl Genet 94: pp. 1038-46 CrossRef
    6. Club MB. Michigan botanist. Michigan Botanical Club. http://hdl.handle.net/2027/spo.0497763.0038.101.
    7. Hand, ML, Cogan, NO, Stewart, AV, Forster, JW (2010) Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the lolium-festuca species complex. BMC Evol Biol 10: pp. 303 CrossRef
    8. Charmet, G, Balfourier, F (1994) Isozyme variation and species relationships in the genus lolium l (ryegrasses, graminaceae). Theor Appl Genet 87: pp. 641-9 CrossRef
    9. Loureiro, J, Kopecky, D, Castro, S, Santos, C, Silveira, P (2007) Flow cytometric and cytogenetic analyses of iberian peninsula festuca spp.. Plant Systemat Evol 269: pp. 89-105 CrossRef
    10. Humphreys, MW, Thomas, H (1993) Improved drought resistance in introgression lines derived from lolium-multiflorum x festuca-arundinacea hybrids. Plant Breeding 111: pp. 155-61 CrossRef
    11. Akiyama, Y, Kimura, K, Yamada-Akiyama, H, Kubota, A, Takahara, Y, Ueyama, Y (2012) Genomic characteristics of a diploid f-4 festulolium hybrid (lolium multiflorum x festuca arundinacea). Genome 55: pp. 599-603 CrossRef
    12. Yamada, T, Forster, JW, Humphreys, MW, Takamizo, T (2005) Genetics and molecular breeding in lolium/festuca grass species complex. Grassland Science 51: pp. 89-106 CrossRef
    13. Polok, K (2007) Molecular evolution of the genus Lolium L. Studio Poligrafii Komputerowej 鈥淪QL鈥? Olsztyn
    14. Humphreys, MO (2005) Genetic improvement of forage crops - past, present and future. J Agr Sci 143: pp. 441-8 CrossRef
    15. Breese, EL, Lewis, EJ, Evans, GM (1981) Interspecies hybrids and polyploidy. Phil Trans Roy Soc Lond B Biol Sci 292: pp. 487-97 CrossRef
    16. Breese, EL, Lewis, EJ (1984) Breeding versatile hybrid grasses. Span 27: pp. 21-3
    17. Humphreys, M, Thomas, HM, Harper, J, Morgan, G, James, A, GhamariZare, A (1997) Dissecting drought- and cold-tolerance traits in the lolium-festuca complex by introgression mapping. New Phytologist 137: pp. 55-60 CrossRef
    18. Adomako, B, Thorogood, D, Clifford, BC (1997) Plant reaction types to crown rust (Puccinia coronata corda) disease inoculations in meadow fescue (F. pratensisl.), perennial ryegrass (L. perenne l) and L. perenne l. introgression lines.. Int Turfgrass Res J 8: pp. 823-31
    19. Oertel, C, Matzk, F (1999) Introgression of crown rust resistance from festuca spp. into lolium multiflorum. Plant Breeding s118: pp. 491-6 CrossRef
    20. Rines, HW, Porter, HL, Carson, ML, Ochocki, GE (2007) Introgression of crown rust resistance from diploid oat avena strigosa into hexaploid cultivated oat a sativa by two methods: direct crosses and through an initial 2x center dot 4x synthetic hexaploid. Euphytica 158: pp. 67-79 CrossRef
    21. Armstead, IP, Harper, JA, Turner, LB, Skot, L, King, IP, Humphreys, MO (2006) Introgression of crown rust (puccinia coronata) resistance from meadow fescue (festuca pratensis) into italian ryegrass (lolium multiflorum): genetic mapping and identification of associated molecular markers. Plant Pathol 55: pp. 62-7 CrossRef
    22. Kosmala, A, Zwierzykowski, Z, Gasior, D, Rapacz, M, Zwierzykowska, E, Humphreys, MW (2006) Gish/fish mapping of genes for freezing tolerance transferred from festuca pratensis to lolium multiflorum. Heredity 96: pp. 243-51 CrossRef
    23. Kosmala, A, Zwierzykowski, Z, Zwierzykowska, E, Rapacz, M, Joks, W, Humphreys, M (2003) Introgression mapping for genes of abiotic stress resistance in lolium multiflorum and festuca pratensis. Czech J Genet Plant Breed 39: pp. 342-4
    24. Buell, CR (2009) Poaceae genomes: going from unattainable to becoming a model clade for comparative plant genomics. Plant Physiol 149: pp. 111-6 CrossRef
    25. Vogel, JP, Garvin, DF, Mockler, TC, Schmutz, J, Rokhsar, D, Bevan, MW (2010) Genome sequencing and analysis of the model grass brachypodium distachyon. Nature 463: pp. 763-8 CrossRef
    26. Yu, J, Hu, S, Wang, J (2002) A draft sequence of the rice genome (oryza sativa l. ssp indica). Science 296: pp. 79-92 CrossRef
    27. Mayer, KFX, Waugh, R, Brown, JWS, Schulman, A, Langridge, P, Platzer, M (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491: pp. 711
    28. Farrell, JD, Byrne, S, Paina, C, Asp, T (2014) De novo assembly of the perennial ryegrass transcriptome using an rna-seq strategy. PLoS One 9: pp. e103567 CrossRef
    29. Ruttink, T, Sterck, L, Rohde, A, Bendixen, C, Rouze, P, Asp, T (2013) Orthology guided assembly in highly heterozygous crops: creating a reference transcriptome to uncover genetic diversity in lolium perenne. Plant Biotechnol J 11: pp. 605-17 CrossRef
    30. Gnerre, S, MacCallum, I, Przybylski, D, Ribeiro, FJ, Burton, JN, Walker, BJ (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108: pp. 1513-8 CrossRef
    31. Grabherr, MG, Haas, BJ, Yassour, M, Levin, JZ, Thompson, DA, Amit, I (2011) Full-length transcriptome assembly from rna-seq data without a reference genome. Nat Biotechnol 29: pp. 644-52 CrossRef
    32. Parra, G, Bradnam, K, Ning, Z, Keane, T, Korf, I (2009) Assessing the gene space in draft genomes. Nucleic Acids Res 37: pp. 289-97 CrossRef
    33. Nakasugi, K, Crowhurst, RN, Bally, J, Wood, CC, Hellens, RP, Waterhouse, PM (2013) De novo transcriptome sequence assembly and analysis of rna silencing genes of nicotiana benthamiana. PLoS ONE 8: pp. 59534 CrossRef
    34. Faino, L, Thomma, BP (2012) The transcriptome of verticillium dahliae-infected nicotiana benthamiana determined by deep rna sequencing. Plant Signal Behav. 7: pp. 1065-9 CrossRef
    35. Moreno-Hagelsieb, G, Latimer, K (2008) Choosing blast options for better detection of orthologs as reciprocal best hits. Bioinformatics 24: pp. 319-24 CrossRef
    36. Li, L, Roos, DS (2003) Orthomcl: identification of ortholog groups for eukaryotic genomes. Genome Res 13: pp. 2178-89 CrossRef
    37. Haan, HD (1955) Origin of westerwolths ryegrass (lolium multiflorum westerwoldicum). Euphytica 4: pp. 206-10 CrossRef
    38. Distelfeld, A, Tranquilli, G, Li, CX, Yan, LL, Dubcovsky, J (2009) Genetic and molecular characterization of the vrn2 loci in tetraploid wheat. Plant Physiol 149: pp. 245-57 CrossRef
    39. Andres, F, Coupland, G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13: pp. 627-39 CrossRef
    40. Higgins, JA, Bailey, PC, Laurie, DA (2010) Comparative genomics of flowering time pathways using brachypodium distachyon as a model for the temperate grasses. Plos One 5: pp. e10065 CrossRef
    41. Ergon, A, Hamland, H, Rognli, OA (2013) Differential expression of vrn1 and other mads-box genes in festuca pratensis selections with different vernalization requirements. Biologia Plantarum 57: pp. 245-54 CrossRef
    42. Aamlid, TS, Heide, OM, Boelt, B (2000) Primary and secondary induction requirements for flowering of contrasting european varieties of lolium perenne. Ann Bot 86: pp. 1087-95 CrossRef
    43. Paina, C, Byrne, SL, Domnisoru, C, Asp, T (2014) Vernalization mediated changes in the lolium perenne transcriptome. PLoS One 9: pp. 107365 CrossRef
    44. Dennis, ES, Peacock, WJ (2009) Vernalization in cereals. J Biol 8: pp. 57 CrossRef
    45. Chen A, Dubcovsky J. Wheat tilling mutants show that the vernalization gene vrn1 down-regulates the flowering repressor vrn2 in leaves but is not essential for flowering. Plos Genet. 2012; 8(12).
    46. Yan, LL, Loukoianov, A, Blechl, A, Tranquilli, G, Ramakrishna, W, SanMiguel, P (2004) The wheat vrn2 gene is a flowering repressor down-regulated by vernalization. Science 303: pp. 1640-4 CrossRef
    47. Huang, DW, Sherman, BT, Lempicki, RA (2009) Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nat Protoc 4: pp. 44-57 CrossRef
    48. Fulton, TM, Eannetta, NT, Tanksley, SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14: pp. 1457-67 CrossRef
    49. Jensen, TS, Brunak, S, Bork, P, Jensen, LJ (2007) Evolution of cell cycle control: Same molecular machines, different regulation. Cell Cycle 6: pp. 1819-25 CrossRef
    50. Pasakinskiene, I, Anamthawat-Jonsson, K, Humphreys, MW, Paplauskiene, V, Jones, RN (1998) New molecular evidence on genome relationships and chromosome identification in fescue (festuca) and ryegrass (lolium). Heredity 81: pp. 659-65 CrossRef
    51. Catalan, P, Torrecilla, P, Lopez Rodriguez, JA, Olmstead, RG (2004) Phylogeny of the festucoid grasses of subtribe loliinae and allies (poeae, pooideae) inferred from its and trnl-f sequences. Mol Phylogenet Evol 31: pp. 517-41 CrossRef
    52. Darbyshire, SJ (1993) Realignment of festuca subgenus schedonorus with the genus lolium (poaceae). Novon 3: pp. 239-43 CrossRef
    53. Stammers, M, Harris, J, Evans, GM, Hayward, MD, Forster, JW (1995) Use of random pcr (rapd) technology to analyse phylogenetic relationships in the lolium/festuca complex. Heredity (Edinb) 74: pp. 19-27 CrossRef
    54. Inda, LA, Sanmart铆n, I, Buerki, S, Catal谩n, P (2014) Mediterranean origin and Miocene-Holocene Old World diversification of meadow fescues and ryegrasses (Festuca subgenus Schedonorus and Lolium). J Biogeogr 41: pp. 600-14 CrossRef
    55. Humphreys, M, Thomas, HM, Harper, J, Morgan, G, James, A, Ghamari-Zare, A (1997) Dissecting drought- and cold-tolerance traits in the Lolium-Festuca complex by introgression mapping. New Phytologist 137: pp. 55-60 CrossRef
    56. King, J, Armstead, IP, Donnison, SI, Roberts, LA, Harper, JA, Skot, K (2007) Comparative analyses between lolium/festuca introgression lines and rice reveal the major fraction of functionally annotated gene models is located in recombination-poor/very recombination-poor regions of the genome. Genetics 177: pp. 597-606 CrossRef
    57. Harper, J, Armstead, I, Thomas, A, James, C, Gasior, D, Bisaga, M (2011) Alien introgression in the grasses Lolium perenne (perennial ryegrass) and Festuca pratensis (meadow fescue): the development of seven monosomic substitution lines and their molecular and cytological characterization. Ann Bot 107: pp. 1313-21 CrossRef
    58. Gaut, BS, Tredway, LP, Kubik, C, Gaut, RL, Meyer, W (2000) Phylogenetic relationships and genetic diversity among members of the Festuca-Lolium complex (Poaceae) based on ITS sequence data. Plant Syst Evol 224: pp. 33-55 CrossRef
    59. Yang, ZH, Bielawski, JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15: pp. 496-503 CrossRef
    60. Hurst, LD (2002) The ka/ks ratio: diagnosing the form of sequence evolution. Trends Genet 18: pp. 486-7 CrossRef
    61. Gross, BL, Olsen, KM (2010) Genetic perspectives on crop domestication. Trends Plant Sci 15: pp. 529-37 CrossRef
    62. Trifa, Y, Privat, I, Gagnon, J, Baeza, L, Lerbs-Mache, S (1998) The nuclear rpl4 gene encodes a chloroplast protein that co-purifies with the t7-like transcription complex as well as plastid ribosomes. J Biol Chem 273: pp. 3980-5 CrossRef
    63. Theologis, A, Ecker, JR, Palm, CJ, Federspiel, NA, Kaul, S, White, O (2000) Sequence and analysis of chromosome 1 of the plant arabidopsis thaliana. Nature 408: pp. 816-20 CrossRef
    64. Grant, MR, Godiard, L, Straube, E, Ashfield, T, Lewald, J, Sattler, A (1995) Structure of the arabidopsis rpm1 gene enabling dual-specificity disease resistance. Science 269: pp. 843-6 CrossRef
    65. Bittner-Eddy, PD, Crute, IR, Holub, EB, Beynon, JL (2000) Rpp13 is a simple locus in arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in peronospora parasitica. Plant J 21: pp. 177-188 CrossRef
    66. John, PCL, Mews, M, Moore, R (2001) Cyclin/cdk complexes: their involvement in cell cycle progression and mitotic division. Protoplasma 216: pp. 119-42 CrossRef
    67. Buschiazzo, E, Ritland, C, Bohlmann, J, Ritland, K (2012) Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dn/ds in conifers compared to angiosperms. BMC Evol Biol 12: pp. 8 CrossRef
    68. Roth, C, Liberles, DA (2006) A systematic search for positive selection in higher plants (embryophytes). BMC Plant Biol 6: pp. 12 CrossRef
    69. Senda, T, Tominaga, T (2004) Genetic diversity of darnel (lolium temulentum l.) in malo, ethiopia depends on traditional farming systems. Econ Bot 58: pp. 568-77 CrossRef
    70. Wilkins, PW (1991) Breeding perennial ryegrass for agriculture. Euphytica 52: pp. 201-14 CrossRef
    71. Maccallum, I, Przybylski, D, Gnerre, S, Burton, J, Shlyakhter, I (2009) Allpaths 2: small genomes assembled accurately and with high continuity from short paired reads. Genome Biol 10: pp. 103 CrossRef
    72. Li, B, Dewey, CN (2011) Rsem: accurate transcript quantification from rna-seq data with or without a reference genome. Bmc Bioinformatics 12: pp. 323 CrossRef
    73. Parra, G, Bradnam, K, Korf, I (2007) Cegma: a pipeline to accurately annotate core genes in eukaryotic genornes. Bioinformatics 23: pp. 1061-7 CrossRef
    74. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: pp. 403-10 CrossRef
    75. Finn, RD, Clements, J, Eddy, SR (2011) Hmmer web server: interactive sequence similarity searching. Nucleic Acids Res 39: pp. 29-37 CrossRef
    76. Finn, RD, Bateman, A, Clements, J, Coggill, P, Eberhardt, RY (2014) Pfam: the protein families database. Nucleic Acids Res 42: pp. 222-30 CrossRef
    77. Petersen, TN, Brunak, S, Nielsen, H (2011) Signalp 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: pp. 785-6 CrossRef
    78. Krogh, A, Larsson, B, Sonnhammer, ELL (2001) Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes. J Mol Biol 305: pp. 567-80 CrossRef
    79. Nussbaumer, T, Martis, MM, Roessner, SK, Pfeifer, M, Bader, KC, Sharma, S (2013) Mips plantsdb: a database framework for comparative plant genome research. Nucleic Acids Res 41: pp. 1144-51 CrossRef
    80. Altschul, SF, Madden, TL, Schaffer, AA, Zhang, JH, Zhang, Z, Miller, W (1997) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: pp. 3389-402 CrossRef
    81. Hu, TT, Pattyn, P, Bakker, EG, Cao, J, Cheng, JF, Clark, RM (2011) The arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genet 43: pp. 476 CrossRef
    82. Larkin, M, Blackshields, G, Brown, N, Chenna, R, McGettigan, P, McWilliam, H (2007) ClustalW and ClustalX version 2. Bioinformatics 23: pp. 2947-8 CrossRef
    83. Yang, ZH (2007) Paml 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: pp. 1586-91 CrossRef
    84. Felsenstein, J (1989) Phylip: phylogeny inference package (version 3.2). Cladistics 5: pp. 164-6
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background The Lolium-Festuca complex incorporates species from the Lolium genera and the broad leaf fescues, both belonging to the subfamily Pooideae. This subfamily also includes wheat, barley, oat and rye, making it extremely important to world agriculture. Species within the Lolium-Festuca complex show very diverse phenotypes, and many of them are related to agronomically important traits. Analysis of sequenced transcriptomes of these non-model species may shed light on the molecular mechanisms underlying this phenotypic diversity. Results We have generated de novo transcriptome assemblies for four species from the Lolium-Festuca complex, ranging from 52,166 to 72,133 transcripts per assembly. We have also predicted a set of proteins and validated it with a high-confidence protein database from three closely related species (H. vulgare, B. distachyon and O. sativa). We have obtained gene family clusters for the four species using OrthoMCL and analyzed their inferred phylogenetic relationships. Our results indicate that VRN2 is a candidate gene for differentiating vernalization and non-vernalization types in the Lolium-Festuca complex. Grouping of the gene families based on their BLAST identity enabled us to divide ortholog groups into those that are very conserved and those that are more evolutionarily relaxed. The ratio of the non-synonumous to synonymous substitutions enabled us to pinpoint protein sequences evolving in response to positive selection. These proteins may explain some of the differences between the more stress tolerant Festuca, and the less stress tolerant Lolium species. Conclusions Our data presents a comprehensive transcriptome sequence comparison between species from the Lolium-Festuca complex, with the identification of potential candidate genes underlying some important phenotypical differences within the complex (such as VRN2). The orthologous genes between the species have a very high %id (91,61%) and the majority of gene families were shared for all of them. It is likely that the knowledge of the genomes will be largely transferable between species within the complex.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700