Observation of coupling between zero- and two-dimensional semiconductor systems based on anomalous diamagnetic effects
详细信息    查看全文
  • 作者:Shuo Cao ; Jing Tang ; Yue Sun ; Kai Peng ; Yunan Gao ; Yanhui Zhao…
  • 关键词:magnetophotoluminescence ; InAs quantum dots ; wetting layer ; strong diamagnetic effects
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:306-316
  • 全文大小:1,950 KB
  • 参考文献:[1]Kim, J.; Benson, O.; Kan, H.; Yamamoto, Y. A singlephoton turnstile device. Nature 1999, 397, 500–503.CrossRef
    [2]Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W. V.; Petroff, P. M.; Zhang, L. D.; Hu, E.; Imamoglu, A. A quantum dot single-photon turnstile device. Science 2000, 290, 2282–2285.CrossRef
    [3]Xu, X. L.; Williams, D. A.; Cleaver, J. R. A. Electrically pumped single-photon sources in lateral p–i–n junctions. Appl. Phys. Lett. 2004, 85, 3238–3240.CrossRef
    [4]Yuan, Z. L.; Kardynal, B. E.; Stevenson, R. M.; Shields, A. J.; Lobo, C. J.; Cooper, K.; Beattie, N. S.; Ritchie, D. A.; Pepper, M. Electrically driven single-photon source. Science 2002, 295, 102–105.CrossRef
    [5]Xu, X. L.; Toft, I.; Phillips, R. T.; Mar, J.; Hammura, K.; Williams, D. A. “Plug and play” single-photon sources. Appl. Phys. Lett. 2007, 90, 061103.CrossRef
    [6]Xu, X. L.; Brossard, F.; Hammura, K.; Williams, D. A.; Alloing, B.; Li, L. H.; Fiore, A. “Plug and play” single photons at 1.3 µm approaching gigahertz operation. Appl. Phys. Lett. 2008, 93, 021124.CrossRef
    [7]Zrenner, A.; Beham, E.; Stufler, S.; Findeis, F.; Bichler, M.; Abstreiter, G. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 2002, 418, 612–614.CrossRef
    [8]Mar, J. D.; Baumberg, J. J.; Xu, X. L.; Irvine, A. C.; Williams, D. A. Ultrafast high-fidelity initialization of a quantum-dot spin qubit without magnetic fields. Phys. Rev. B 2014, 90, 241303.CrossRef
    [9]Li, X. Q.; Wu, Y. W.; Steel, D.; Gammon, D.; Stievater, T. H.; Katzer, D. S.; Park, D.; Piermarocchi, C.; Sham, L. J. An all-optical quantum gate in a semiconductor quantum dot. Science 2003, 301, 809–811.CrossRef
    [10]De Greve, K.; Yu, L.; McMahon, P. L.; Pelc, J. S.; Natarajan, C. M.; Kim, N. Y.; Abe, E.; Maier, S.; Schneider, C.; Kamp, M. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 2012, 491, 421–425.CrossRef
    [11]Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L. M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 2013, 110, 167401.CrossRef
    [12]Webster, L. A.; Truex, K.; Duan, L. M.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J. Coherent control to prepare an InAs quantum dot for spin-photon entanglement. Phys. Rev. Lett. 2014, 112, 126801.CrossRef
    [13]Ediger, M.; Bester, G.; Badolato, A.; Petroff, P. M.; Karrai, K.; Zunger, A.; Warburton, R. J. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots. Nat. Phys. 2007, 3, 774–779.CrossRef
    [14]Tang, J.; Cao, S.; Gao, Y.; Sun, Y.; Geng, W. D.; Williams, D. A.; Jin, K. J.; Xu, X. L. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields. Appl. Phys. Lett. 2014, 105, 041109.CrossRef
    [15]Van Hattem, B.; Corfdir, P.; Brereton, P.; Pearce, P.; Graham, A. M.; Stanley, M. J.; Hugues, M.; Hopkinson, M.; Phillips, R. T. From the artificial atom to the Kondo–Anderson model: Orientation-dependent magnetophotoluminescence of charged excitons in InAs quantum dots. Phys. Rev. B 2013, 87, 205308.CrossRef
    [16]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRef
    [17]Fuhrer, M. S.; Hone, J. Measurement of mobility in dualgated MoS2 transistors. Nat. Nano 2013, 8, 146–147.CrossRef
    [18]Hong, X. P.; Kim, J.; Shi, S.-F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nano 2014, 9, 682–686.CrossRef
    [19]Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nano 2014, 9, 372–377.CrossRef
    [20]Latta, C.; Haupt, F.; Hanl, M.; Weichselbaum, A.; Claassen, M.; Wuester, W.; Fallahi, P.; Faelt, S.; Glazman, L.; von Delft, J. et al. Quantum quench of Kondo correlations in optical absorption. Nature 2011, 474, 627–630.
    [21]Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Keizer, J. G.; Hamhuis, G. J.; Nötzel, R.; Silov, A. Y.; Koenraad, P. M. Many-body exciton states in self-assembled quantum dots coupled to a fermi sea. Nat. Phys. 2010, 6, 534–538.CrossRef
    [22]Türeci, H. E.; Hanl, M.; Claassen, M.; Weichselbaum, A.; Hecht, T.; Braunecker, B.; Govorov, A.; Glazman, L.; Imamoglu, A.; von Delft, J. Many-body dynamics of exciton creation in a quantum dot by optical absorption: A quantum quench towards kondo correlations. Phys. Rev. Lett. 2011, 106, 107402.CrossRef
    [23]Govorov, A. O.; Karrai, K.; Warburton, R. J. Kondo excitons in self-assembled quantum dots. Phys. Rev. B 2003, 67, 241307.CrossRef
    [24]Zhang, W.; Govorov, A. O.; Bryant, G. W. Semiconductormetal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect. Phys. Rev. Lett. 2006, 97, 146804.CrossRef
    [25]Bar-Ad, S.; Kner, P.; Marquezini, M. V.; Mukamel, S.; Chemla, D. S. Quantum confined Fano interference. Phys. Rev. Lett. 1997, 78, 1363–1366.CrossRef
    [26]Kroner, M.; Govorov, A. O.; Remi, S.; Biedermann, B.; Seidl, S.; Badolato, A.; Petroff, P. M.; Zhang, W.; Barbour, R.; Gerardot, B. D. et al. The nonlinear Fano effect. Nature 2008, 451, 311–314.
    [27]Karrai, K.; Warburton, R. J.; Schulhauser, C.; Hö gele, A.; Urbaszek, B.; McGhee, E. J.; Govorov, A. O.; Garcia, J. M.; Gerardot, B. D.; Petroff, P. M. Hybridization of electronic states in quantum dots through photon emission. Nature 2004, 427, 135–138.CrossRef
    [28]Helmes, R. W.; Sindel, M.; Borda, L.; von Delft, J. Absorption and emission in quantum dots: Fermi surface effects of anderson excitons. Phys. Rev. B 2005, 72, 125301.CrossRef
    [29]Dalgarno, P. A.; Ediger, M.; Gerardot, B. D.; Smith, J. M.; Seidl, S.; Kroner, M.; Karrai, K.; Petroff, P. M.; Govorov, A. O.; Warburton, R. J. Optically induced hybridization of a quantum dot state with a filled continuum. Phys. Rev. Lett. 2008, 100, 176801.CrossRef
    [30]Hilario, L. M. L.; Aligia, A. A. Photoluminescence of a quantum dot hybridized with a continuum of extended states. Phys. Rev. Lett. 2009, 103, 156802.CrossRef
    [31]Mazur, Y. I.; Dorogan, V. G.; Guzun, D.; Marega, E.; Salamo, G. J.; Tarasov, G. G.; Govorov, A. O.; Vasa, P.; Lienau, C. Measurement of coherent tunneling between InGaAs quantum wells and InAs quantum dots using photoluminescence spectroscopy. Phys. Rev. B 2010, 82, 155413.CrossRef
    [32]Syperek, M.; Andrzejewski, J.; Rudno-Rudzinski, W.; Sek, G.; Misiewicz, J.; Pavelescu, E. M.; Gilfert, C.; Reithmaier, J. P. Influence of electronic coupling on the radiative lifetime in the (In, Ga)As/GaAs quantum dot-quantum well system. Phys. Rev. B 2012, 85, 125311.CrossRef
    [33]Leonard, D.; Pond, K.; Petroff, P. M. Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B 1994, 50, 11687–11692.CrossRef
    [34]Eisenberg, H. R.; Kandel, D. Wetting layer thickness and early evolution of epitaxially strained thin films. Phys. Rev. Lett. 2000, 85, 1286–1289.CrossRef
    [35]Hugues, M.; Teisseire, M.; Chauveau, J. M.; Vinter, B.; Damilano, B.; Duboz, J. Y.; Massies, J. Optical determination of the effective wetting layer thickness and composition in InAs/Ga(In)As quantum dots. Phys. Rev. B 2007, 76, 075335.CrossRef
    [36]Xu, X. L.; Williams, D. A.; Cleaver, J. R. A. Splitting of excitons and biexcitons in coupled InAs quantum dot molecules. Appl. Phys. Lett. 2005, 86, 012103.CrossRef
    [37]Nash, K. J.; Skolnick, M. S.; Claxton, P. A.; Roberts, J. S. Diamagnetism as a probe of exciton localization in quantum wells. Phys. Rev. B 1989, 39, 10943–10954.CrossRef
    [38]Walck, S. N.; Reinecke, T. L. Exciton diamagnetic shift in semiconductor nanostructures. Phys. Rev. B 1998, 57, 9088–9096.CrossRef
    [39]Tsai, M.-F.; Lin, H.; Lin, C.-H.; Lin, S.-D.; Wang, S.-Y.; Lo, M.-C.; Cheng, S.-J.; Lee, M.-C.; Chang, W.-H. Diamagnetic response of exciton complexes in semiconductor quantum dots. Phys. Rev. Lett. 2008, 101, 267402.CrossRef
    [40]Fu, Y. J.; Lin, S. D.; Tsai, M. F.; Lin, H.; Lin, C. H.; Chou, H. Y.; Cheng, S. J.; Chang, W. H. Anomalous diamagnetic shift for negative trions in single semiconductor quantum dots. Phys. Rev. B 2010, 81, 113307.CrossRef
    [41]Schulhauser, C.; Haft, D.; Warburton, R. J.; Karrai, K.; Govorov, A. O.; Kalameitsev, A. V.; Chaplik, A.; Schoenfeld, W.; Garcia, J. M.; Petroff, P. M. Magneto-optical properties of charged excitons in quantum dots. Phys. Rev. B 2002, 66, 193303.CrossRef
    [42]Cao, S.; Tang, J.; Gao, Y.; Sun, Y.; Qiu, K. S.; Zhao, Y. H.; He, M.; Shi, J. A.; Gu, L.; Williams, D. A. et al. Longitudinal wave function control in single quantum dots with an applied magnetic field. Sci. Rep. 2015, 5, 8041.
    [43]Babinski, A.; Ortner, G.; Raymond, S.; Potemski, M.; Bayer, M.; Sheng, W.; Hawrylak, P.; Wasilewski, Z.; Fafard, S.; Forchel, A. Ground-state emission from a single InAs/GaAs self-assembled quantum dot structure in ultrahigh magnetic fields. Phys. Rev. B 2006, 74, 075310.CrossRef
    [44]Someya, T.; Akiyama, H.; Sakaki, H. Laterally squeezed excitonic wave function in quantum wires. Phys. Rev. Lett. 1995, 74, 3664–3667.CrossRef
    [45]Mensing, T.; Reitzenstein, S.; Lö ffler, A.; Reithmaier, J. P.; Forchel, A. Magnetooptical investigations of single self assembled In0.3Ga0.7As quantum dots. Phys. E: Low-Dimens. Sys. Nanostruct. 2006, 32, 131–134.CrossRef
    [46]Mahan, G. D. Excitons in degenerate semiconductors. Phys. Rev. 1967, 153, 882–889.CrossRef
    [47]Finkelstein, G.; Shtrikman, H.; Bar-Joseph, I. Shakeup processes in the recombination spectra of negatively charged excitons. Phys. Rev. B 1996, 53, 12593–12596.CrossRef
    [48]Kheng, K.; Cox, R. T.; d’Aubigné, M. Y.; Bassani, F.; Saminadayar, K.; Tatarenko, S. Observation of negatively charged excitons X- in semiconductor quantum wells. Phys. Rev. Lett. 1993, 71, 1752–1755.CrossRef
    [49]Toft, I.; Phillips, R. T. Hole g factors in GaAs quantum dots from the angular dependence of the spin fine structure. Phys. Rev. B 2007, 76, 033301.CrossRef
    [50]Brunner, D.; Gerardot, B. D.; Dalgarno, P. A.; Wüst, G.; Karrai, K.; Stoltz, N. G.; Petroff, P. M.; Warburton, R. J. A coherent single-hole spin in a semiconductor. Science 2009, 325, 70–72.CrossRef
  • 作者单位:Shuo Cao (1)
    Jing Tang (1)
    Yue Sun (1)
    Kai Peng (1)
    Yunan Gao (1)
    Yanhui Zhao (1)
    Chenjiang Qian (1)
    Sibai Sun (1)
    Hassan Ali (1)
    Yuting Shao (1)
    Shiyao Wu (1)
    Feilong Song (1)
    David A. Williams (2)
    Weidong Sheng (3)
    Kuijuan Jin (1) (4)
    Xiulai Xu (1)

    1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
    2. Hitachi Cambridge Laboratory, Cavendish Laboratory, Cambridge, CB3 0HE, UK
    3. Department of Physics, Fudan University, Shanghai, 200433, China
    4. Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
We report the direct observation of coupling between a single self-assembled InAs quantum dot and a wetting layer, based on strong diamagnetic shifts of many-body exciton states using magneto-photoluminescence spectroscopy. An extremely large positive diamagnetic coefficient is observed when an electron in the wetting layer combines with a hole in the quantum dot; the coefficient is nearly one order of magnitude larger than that of the exciton states confined in the quantum dots. Recombination of electrons with holes in a quantum dot of the coupled system leads to an unusual negative diamagnetic effect, which is five times stronger than that in a pure quantum dot system. This effect can be attributed to the expansion of the wavefunction of remaining electrons in the wetting layer or the spread of electrons in the excited states of the quantum dot to the wetting layer after recombination. In this case, the wavefunction extent of the final states in the quantum dot plane is much larger than that of the initial states because of the absence of holes in the quantum dot to attract electrons. The properties of emitted photons that depend on the large electron wavefunction extents in the wetting layer indicate that the coupling occurs between systems of different dimensionality, which is also verified from the results obtained by applying a magnetic field in different configurations. This study paves a new way to observe hybrid states with zero- and two-dimensional structures, which could be useful for investigating the Kondo physics and implementing spin-based solid-state quantum information processing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700