Substrate stiffness and oxygen availability as regulators of mesenchymal stem cell differentiation within a mechanically loaded bone chamber
详细信息    查看全文
  • 作者:Darren Paul Burke (1) (2)
    Hanifeh Khayyeri (3)
    Daniel John Kelly (1) (2) (4)
  • 关键词:Stem cell differentiation ; Finite element ; Bone chamber ; Tissue regeneration ; Substrate stiffness ; Oxygen availability
  • 刊名:Biomechanics and Modeling in Mechanobiology
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:14
  • 期:1
  • 页码:93-105
  • 全文大小:2,835 KB
  • 参考文献:1. Appeddu PA, Shur BD (1994) Molecular analysis of cell surface beta-1,4-galactosyltransferase function during cell migration. Proceedings of the National Academy of Sciences of the United States of America 91(6):2095鈥?099
    2. Armstrong CG, Mow VC (1982) Variations in the intrinsic mechanical properties of human articular-cartilage with age, degeneration, and water-content. J Bone Joint Surg Am 64(1):88鈥?4
    3. Bostrom MP, Lane JM, Berberian WS, Missri AA, Tomin E, Weiland A, Doty SB, Glaser D, Rosen VM (1995) Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 13(3):357鈥?67 CrossRef
    4. Burke D, Dishowitz M, Sweetwyne M, Miedel E, Hankenson KD, Kelly DJ (2013) The role of oxygen as a regulator of stem cell fate during fracture repair in TSP2-null mice. J Orthop Res 31(10):1585鈥?596
    5. Burke DP, Kelly DJ (2012) Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model. PLoS One 7(7):e4073
    6. Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, Young鈥檚 modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28(36):5544鈥?554 CrossRef
    7. Byrne DP, Lacroix D, Prendergast PJ (2011) Simulation of fracture healing in the tibia: Mechanoregulation of cell activity using a lattice modeling approach. J Orthop Res 29(10):1496鈥?503
    8. Carter DR, Blenman PR, Beaupre GS (1988) Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res 6(5):736鈥?48 CrossRef
    9. Checa S, Byrne DP, Prendergast PJ (2012) Predictive modelling in mechanobiology: combining algorithms for cell activities in response to physical stimuli using a lattice-modelling approach. Adv Struct Mater 1(1):423鈥?35
    10. Checa S, Prendergast PJ (2009) A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann Biomed Eng 37(1):129鈥?45 CrossRef
    11. Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32(3):255鈥?66 CrossRef
    12. de Rooij PP, Siebrecht MA, Tagil M, Aspenberg P (2001) The fate of mechanically induced cartilage in an unloaded environment. J Biomech 34(7):961鈥?66 CrossRef
    13. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179鈥?83 CrossRef
    14. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677鈥?89 CrossRef
    15. Epari DR, Lienau J, Schell H, Witt F, Duda GN (2008) Pressure, oxygen tension and temperature in the periosteal callus during bone healing-an in vivo study in sheep. Bone 43(4):734鈥?39 CrossRef
    16. Fehrer C, Brunauer R, Laschober G, Unterluggauer H, Reitinger S, Kloss F, Gully C, Gassner R, Lepperdinger G (2007) Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6(6):745鈥?57
    17. Geris L, Gerisch A, Sloten JV, Weiner R, Oosterwyck HV (2008) Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol 251(1):137鈥?58 CrossRef
    18. Geris L, Sloten JV, Van Oosterwyck H (2010a) Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech Model Mechanobiol 9(6):713鈥?24 CrossRef
    19. Geris L, Van Oosterwyck H, Vander Sloten J, Duyck J, Naert I (2003) Assessment of mechanobiological models for the numerical simulation of tissue differentiation around immediately loaded implants. Comput Methods Biomech Biomed Eng 6(5鈥?):277鈥?88 CrossRef
    20. Geris L, Vandamme K, Naert I, Van Oosterwyck H, Duyck J (2010b) Mechanical loading affects angiogenesis and osteogenesis in an in vivo bone chamber: a modeling study. Tissue Eng Part A 16(11):3353鈥?361 CrossRef
    21. Gomez-Benito MJ, Garcia-Aznar JM, Kuiper JH, Doblare M (2005) Influence of fracture gap size on the pattern of long bone healing: a computational study. J Theor Biol 235(1):105鈥?19 CrossRef
    22. Haudenschild AK, Hsieh AH, Kapila S, Lotz JC (2009) Pressure and distortion regulate human mesenchymal stem cell gene expression. Ann Biomed Eng 37(3):492鈥?02 CrossRef
    23. Hershey D, Karhan T (1968) Diffusion coefficients for oxygen transport in whole blood. AIChE J 14(6):969鈥?72 CrossRef
    24. Hirao M, Tamai N, Tsumaki N, Yoshikawa H, Myoui A (2006) Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. J Biol Chem 281(41):31079鈥?1092 CrossRef
    25. Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R, Kerst G, Muller I (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 11:11 CrossRef
    26. Hori RY, Lewis JL (1982) Mechanical properties of the fibrous tissue found at the bone-cement interface following total joint replacement. J Biomed Mater Res 16(6):911鈥?27 CrossRef
    27. Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2006) Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. J Orthop Res 24(5):898鈥?07 CrossRef
    28. Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2008) A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J Theor Biol 252(2):230鈥?46 CrossRef
    29. Joyce ME, Roberts AB, Sporn MB, Bolander ME (1990) Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110(6):2195鈥?207 CrossRef
    30. Kanichai M, Ferguson D, Prendergast PJ, Campbell VA (2008) Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. J Cell Physiol 216(3):708鈥?15 CrossRef
    31. Kelly DJ, Prendergast PJ (2005) Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J Biomech 38(7):1413鈥?422 CrossRef
    32. Khayyeri H, Checa S, Tagil M, Aspenberg P, Prendergast PJ (2011) Variability observed in mechano-regulated in vivo tissue differentiation can be explained by variation in cell mechano-sensitivity. J Biomech 44(6):1051鈥?058 CrossRef
    33. Khayyeri H, Checa S, Tagil M, Prendergast PJ (2009) Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach. J Orthop Res 27(12):1659鈥?666 CrossRef
    34. Khayyeri H, Isaksson H, Prendergast PJ (2013) Corroboration of computational models for mechanoregulated stem cell differentiation. Comput Methods Biomech Biomed Eng. doi:10.1080/10255842.2013.774381
    35. Knippenberg M, Helder MN, Wuisman PI, Klein-Nulend J (2006) Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem Biophys Res Commun 342(3):902鈥?908
    36. Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35(9):1163鈥?171 CrossRef
    37. Listrom RD, Symington JM, Albrektsson T (1988) A bone chamber for investigation of gas pressure. Oxygen tension measured in rabbits. Acta Orthop Scand 59(4):454鈥?58 CrossRef
    38. Loboa EG, Beaupre GS, Carter DR (2001) Mechanobiology of initial pseudarthrosis formation with oblique fractures. J Orthop Res 19(6):1067鈥?072 CrossRef
    39. Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V (2006) Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 57(1):24鈥?1 CrossRef
    40. Meyer EG, Buckley CT, Thorpe SD, Kelly DJ (2010) Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression. J Biomech 43(13):2516鈥?523 CrossRef
    41. Ochoa JA, Hillberry BM (1992) Permeability of bovine cancellous bone. Trans of the 38th ORS:162
    42. Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials 32(16):3921鈥?930
    43. Pattappa G, Heywood HK, de Bruijn JD, Lee DA (2010) The metabolism of human mesenchymal stem cells during proliferation and differentiation. J Cell Physiol 226(10):2562鈥?570
    44. Peiffer V, Gerisch A, Vandepitte D, Van Oosterwyck H, Geris L (2011) A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech Model Mechanobiol 10(3):383鈥?95 CrossRef
    45. Perez MA, Prendergast PJ (2007) Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. J Biomech 40(10):2244鈥?253 CrossRef
    46. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143鈥?47 CrossRef
    47. Prendergast PJ, Huiskes R, Soballe K (1996) Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30(6):539鈥?48 CrossRef
    48. Reina-Romo E, Gomez-Benito MJ, Dominguez J, Garcia-Aznar JM (2012) A lattice-based approach to model distraction osteogenesis. J Biomech 45(16):2736鈥?742 CrossRef
    49. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99(15):9656鈥?661 CrossRef
    50. Tagil M, Aspenberg P (1999) Cartilage induction by controlled mechanical stimulation in vivo. J Orthop Res 17(2):200鈥?04 CrossRef
    51. Takahashi I, Nuckolls GH, Takahashi K, Tanaka O, Semba I, Dashner R, Shum L, Slavkin HC (1998) Compressive force promotes sox9, type II collagen and aggrecan and inhibits IL-1beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells. J Cell Sci 111(Pt 14):2067鈥?076
    52. Topol L, Chen W, Song H, Day TF, Yang Y (2009) Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. J Biol Chem 284(5):3323鈥?333 CrossRef
    53. van der Meulen MC, Huiskes R (2002) Why mechanobiology? Survey article. J Biomech 35(4):401鈥?14 CrossRef
    54. Yun Z, Maecker HL, Johnson RS, Giaccia AJ (2002) Inhibition of PPAR[gamma]2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2(3):331鈥?41 CrossRef
  • 作者单位:Darren Paul Burke (1) (2)
    Hanifeh Khayyeri (3)
    Daniel John Kelly (1) (2) (4)

    1. Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
    2. Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
    3. Department of Biomedical Engineering, Lund University, Lund, Sweden
    4. Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Biomedical Engineering
    Mechanics
    Biophysics and Biomedical Physics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1617-7940
文摘
Mechanical stimuli such as tissue deformation and fluid flow are often implicated as regulators of mesenchymal stem cell (MSC) differentiation during regenerative events in vivo. However, in vitro studies have identified several other physical and biochemical environmental cues, such as substrate stiffness and oxygen availability, as key regulators of stem cell fate. Hypotheses for how MSC differentiation is regulated in vivo can be either corroborated or rejected based on the ability of in silico models to accurately predict spatial and temporal patterns of tissue differentiation observed experimentally. The goal of this study was to employ a previously developed computational framework to test the hypothesis that substrate stiffness and oxygen availability regulate stem cell differentiation during tissue regeneration within an implanted bone chamber. To enable a prediction of the oxygen levels within the bone chamber, a lattice model of angiogenesis was implemented where blood vessel progression was dependent on the local mechanical environment. The model successfully predicted key aspects of MSC differentiation, including the correct spatial development of bone, marrow and fibrous tissue within the unloaded bone chamber. The model also successfully predicted chondrogenesis within the chamber upon the application of mechanical loading. This study provides further support for the hypothesis that substrate stiffness and oxygen availability regulate stem cell differentiation in vivo. These simulations also highlight the indirect role that mechanics may play in regulating MSC fate by inhibiting blood vessel progression and hence disrupting oxygen availability within regenerating tissues.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700