A compact nano manipulator based on an atomic force microscope coupling with a scanning electron microscope or an inverted optical microscope
详细信息    查看全文
  • 作者:Futoshi Iwata (1)
    Yuya Mizuguchi (1)
    Hideyuki Ko (1)
    Tatsuo Ushiki (2)
  • 关键词:AFM ; SEM ; Manipulation ; Haptic deevice ; Nanofabrication
  • 刊名:Journal of Micro - Nano Mechatronics
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:8
  • 期:1
  • 页码:25-32
  • 全文大小:586KB
  • 参考文献:1. Junno T, Deppert K, Montelius L, Samuelson L (1995) Controlled manipulation of nanoparticles with an atomic force microscope. Appl Phys Lett 66:3627鈥?629 CrossRef
    2. Schaefer DM, Reifenberger R, Patil A, Andres RP (1995) Nanometer-size clusters with the atomic force microscope. Appl Phys Lett 66:1012鈥?014 CrossRef
    3. Hansen LT, Kuhle A, Sorensen AH, Bohr J, Lindelof PE (1998) A technique for positioning nanoparticles using an atomic force microscope. Nanotechnology 9:337鈥?42 CrossRef
    4. Wouters D (2004) Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devices. Angew Chem Int Ed 43:2480鈥?495 CrossRef
    5. Fotiadis D, Scheuring S, M眉ller SA, Engel A, M眉ller DJ (2002) Imaging and manipulation of biological structures with the AFM. Micron 33:385鈥?97 CrossRef
    6. Liu Z, Li Z, Wei G, Song Y, Wang L, Sun L (2006) Microsc. Manipulation, dissection, and lithography using modified tapping mode atomic force microscope. Res Tech 69:998鈥?004 CrossRef
    7. Falvo MR, Taylor RM II, Helser A, Chi V, Brooks FP Jr, Washburn S, Superfine R (1999) Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397:236鈥?38 CrossRef
    8. Falvo MR, Clary G, Helser A, Paulson S, Taylor RM II, Chi V, Brooks FP Jr, Washburn S, Superfine R (1999) Nanomanipulation experiments exploring frictional and mechanical properties of carbon nanotubes. Microsc Microanal 4:504鈥?12
    9. Paulson S, Falvo MR, Snider N, Helser A, Hudson T, Seeger A, Taylor RM II, Superfine R, Washburn S (1999) In situ resistance measurements of strained carbon nanotubes. Appl Phys Lett 75:2936鈥?938 CrossRef
    10. Seeger A, Paulson S, Falvo MR, Helser A, Taylor RM II, Superfine R, Washburn S (2001) Hands-on tools for nanotechnology. J Vac Sci Technol B 19:2717鈥?722 CrossRef
    11. Jobin M, Foschia R, Grange S, Baur C, Gremaud G, Lee K., Forr贸 L, Kulik A (2005) Versatile force鈥揻eedback manipulator for nanotechnology applications. Rev. Sci. Instrum. 76: 053701-6page
    12. Guthold M, Falvo MR, Matthews WG, Paulson S, Mullin J, Lord S, Erie D, Washburn S, Superfine R, Brooks FP Jr, Taylor RM II (1999) Investigation and modification of molecular structures with the nanomanipulator. J Mol Graphics Mod 17:187鈥?97 CrossRef
    13. Guthold M, Falvo MR, Matthews WG, Paulson S, Washburn S, Erie DA, Superfine R, Brooks FP Jr, Taylor RM II (2000) Controlled manipulation of molecular samples with the nanomanipulator. IEEE/ASME Trans Mechatron 5:189鈥?98 CrossRef
    14. Guthold M, Matthews WG, Negishi A, Taylor RM II, Erie D, Brooks FP Jr, Superfine R (1999) Quantitative manipulation of DNA and viruses with the nanomanipulator scanning force microscope. Surf Interf Anal 27:437鈥?43 CrossRef
    15. Li G, Xi N, Yu M, Fung WK (2004) Development of augmented reality system for AFM-based nanomanipulation. IEEE/ASME Trans Mechatron 9:358鈥?65 CrossRef
    16. Vogl W, Ma B, Sitti M (2006) Augmented reality user interface for an atomic force microscope-based nanorobotic system. IEEE Trans Nanotechnol 5:397鈥?06 CrossRef
    17. Onal CD, Sitti M (2010) Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope. IEEE Trans Nanotechnol 9:46鈥?4 CrossRef
    18. Bolopion A, Cagneau B, R茅gnier S (2009) 2D micro teleoperation with force feedback. Proc. of IEEE Int. Conf. on Intelligent Robots and Systems: 3265鈥?570
    19. Bolopion A, Xie H, Haliyo S, R茅gnier S (2010) Haptic teleoperation for 3D microassembly of spherical objects. IEEE/ASME Trans Mechatron 17:116鈥?27 CrossRef
    20. Xie H (2010) High-efficiency automated nanomanipulation with parallel imaging/manipulation force microscopy. IEEE Trans Nanotechnol 9:46鈥?4 CrossRef
    21. Lixin D, Arai F, Fukuda T (2001) 3D nanorobotic manipulation of multi-wall carbon nanotubes. Proc. of the IEEE int. Conf. on Robotics and Automation: 632鈥?37
    22. Yu M, Dyer MJ, Skidmore GD, Rohrs HW, Lu X, Ausman KD, Hhr JRV, Ruoff RS (1999) Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology 10:244鈥?52 CrossRef
    23. Fatikow S, Wich T, H眉lsen H, Sievers T, J盲unisch M (2006) Microrobot system for automatic nanohandling inside a scanning electron microscope. Proc. of IEEE int. Conf. on Robotics and Automation: 1402鈥?407
    24. Sievers T, Fatikow S (2006) Real-time object tracking for the robotbased nanohandling in a scanning electron microscope. J Micromechatron 3:267鈥?84, Special Issue on Micro/Nanohandling CrossRef
    25. Mick U, Eichhorn V, Wortmann T, Diederichs C, Fatikow S (2010) Combined nanorobotic AFM/SEM system as novel toolbox for automated hybrid analysis and manipulation of nanoscale objects. Proc. IEEE int. Conf. on Robotics and Automation: 4088鈥?093
    26. Fatikow S, Seyfried J, Fahlbusch ST, Buerkle A, Schmoeckel F (2000) A flexible microrobot-based microassembly station. J Intell Robot Syst 27:135鈥?69 CrossRef
    27. Fatikow S, Fahlbusch ST, Garnica ST, H眉lsen H, Kortschack A, Shirinov A, Sill A (2002) Development of a Versatile Nanohandling Station in a Scanning Electron Microscope. Int. Workshop on Microfactories, Minneapolis, U.S.A: 93鈥?6
    28. Sievers T, Fatikow S (2005) Visual Servoing of a Mobile Microrobot inside a Scanning Electron Microscope. Proc. IEEE Int. Conf. on Intelligent Robots and Systems: 1682鈥?686
    29. Rubio-Sierr FJ, Stark RW, Thalhammer S, Heckl WM (2003) Force feedback joystick as a low cost haptic interface for an atomic force microscopy nanomanipulator. Appl Phys A 76:903鈥?06 CrossRef
    30. Stark RW, Rubio-Sierra FJ, Thalhammer S, Heckl WM (2003) Combined nanomanipulation by atomic force microscopy and UV-laser ablation for chromosomal dissection. Eur Biophys J 32:33鈥?9
    31. Rubio-Sierra FJ, Heckl WM, Stark RW (2005) Nanomanipulation by atomic force microscopy. Adv Eng Mater 7:193鈥?96 CrossRef
    32. Kassiesi R, Van Der Werf KO, Lenferink A, Hunter CN, Olsen JD, Subramaniam V, Otto C (2005) Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology. J Microsc 217:109鈥?16 CrossRef
    33. Pengi L, Stephens BJ, Bonini K, Cubicciotti R, Guthold M (2007) A combined atomic force/fluorescence microscopy technique to select aptamers in a single cycle from a small pool of random oligonucleotides. Microsc Res Tech 70:372鈥?81 CrossRef
    34. Foubert P, Vanoppen P, Martin M, Gensch T, Hofkens J, Helser A, Seeger S, Taylor RM, Rowan AE, Nolte RJM, Schryver FCD (2000) Mechanical and optical manipulation of porphyrin rings at the submicrometre scale. Nanotechnology 11:16鈥?3 CrossRef
    35. Liu W, Jawerth LM, Sparks EA, Falvo MR, Hantgan RR, Superfine R, Lord ST, Guthold M (2006) Fibrin fibers have extraordinary extensibility and elasticity. Science 313:634 CrossRef
    36. Guthold M, Liu W, Stephens BJ, Lord ST, Hantgan RR, Erie DA, Taylor RM, Superfine R (2004) Visualization and mechanical manipulations of individual fibrin fibers suggest that fiber cross section has fractal dimension. Biophys J 87:4226鈥?236 CrossRef
    37. Sitti M, Hashimoto H (2000) Two-dimentional fine particle positioning under optical microscope using a piezoresistive cantilever as a manipulator. J Micromechatoron 1:25鈥?8 CrossRef
    38. Iwata F, Ohara K, Ishizu Y, Sasaki A, Aoyama H, Ushiki T (2008) Nanometer-scale manipulation and ultrasonic cutting using an atomic force microscope controlled by a haptic device as a human interface. Jpn J Appl Phys 47(7):6181鈥?185 CrossRef
    39. Iwata F, Mizuguchi Y, Ozawa K, Ushiki T (2010) Operation of self-sensitive cantilever in liquid for multiprobe manipulation. Jpn. J. Appl. Phys. 49: 08LB14 (5 page)
  • 作者单位:Futoshi Iwata (1)
    Yuya Mizuguchi (1)
    Hideyuki Ko (1)
    Tatsuo Ushiki (2)

    1. Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, 432-8561, Japan
    2. Division of Microscopic Anatomy and Bio-imaging, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
  • ISSN:1865-3936
文摘
In this paper, we describe a novel nano manipulator based on an atomic force microscope (AFM). The body of the manipulator is enough compact to be operated inside the sample chamber of a scanning electron microscope (SEM). In order to realize the compact body, we employed a self-detection type cantilever for AFM observation. The cantilever includes strain resistance element, which can easily detect a deflection signal of the cantilever without other sensing devices such as optical lever systems. It is possible to observe the manipulation situation in the real time observation by using the SEM. The AFM manipulator is coupled with a haptic device for human interface. Thus, by using this system, the operator can move the AFM probe at any position on the surface with feeling the interaction force detected by the cantilever on the sample surface according to the cantilever deflection. As a performance of the system, biological samples were controllably manipulated under the SEM observation. Furthermore, in order to deal with biological samples in liquid condition, the manipulator can be coupled with an inverted optical microscope. By using the system, we successfully demonstrated manipulation of biological samples in liquid condition. Two AFM manipulators could be used for dissection of biological samples like a knife and fork.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700