Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought
详细信息    查看全文
  • 作者:Lluís Gómez-Gener ; Biel Obrador ; Daniel von Schiller ; Rafael Marcé…
  • 关键词:Greenhouse gas fluxes ; Carbon dioxide ; Methane ; Fluvial network ; Temporary rivers ; Summer drought
  • 刊名:Biogeochemistry
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:125
  • 期:3
  • 页码:409-426
  • 全文大小:2,063 KB
  • 参考文献:Abril G (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem Cycles 19:1-6. doi:10.-029/-005GB002457 CrossRef
    Acu?a V, Tockner K (2010) The effects of alterations in temperature and flow regime on organic carbon dynamics in Mediterranean river networks. Global Chang Biol 16:2638-650. doi:10.-111/?j.-365-2486.-010.-2170.?x
    Acu?a V, Datry T, Marshall J et al (2014) Why should we care about temporary waterways? Science 343:1080-082. doi:10.-126/?science.-246666 CrossRef
    Alin SR, Rasera MDFFL, Salimon CI et al (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res 116:G01009. doi:10.-029/-010JG001398
    Angert A, Yakir D, Rodeghiero M et al (2014) Using O2 to study the relationships between soil CO2 efflux and soil respiration. Biogeosciences Discuss 11:12039-2068. doi:10.-194/?bgd-11-12039-2014 CrossRef
    Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555-58. doi:10.-038/?nature05038 CrossRef
    Bade DL (2009) Gas exchange across the air-water interface. In: Gene EL (ed) Encyclopedia of inland waters. Academic Press, Oxford, pp 70-8CrossRef
    Bastien J, Demarty M (2013) Spatio-temporal variation of gross CO2 and CH4 diffusive emissions from Australian reservoirs and natural aquatic ecosystems, and estimation of net reservoir emissions. Lakes Reserv Res Manag 18:115-27. doi:10.-111/?lre.-2028 CrossRef
    Bastviken D, Cole J, Pace M, Tranvik LJ (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18:1-2. doi:10.-029/-004GB002238 CrossRef
    Bastviken D, Tranvik LJ, Downing JA et al (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50-7. doi:10.-126/?science.-196808 CrossRef
    Battin TJ, Luyssaert S, Kaplan LA et al (2009a) The boundless carbon cycle. Nat Geosci 2:598-00. doi:10.-038/?ngeo618 CrossRef
    Battin TJ, Kaplan LA, Findlay S et al (2009b) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 2:95-00. doi:10.-038/?ngeo602 CrossRef
    Baulch HM, Dillon PJ, Maranger R, Schiff SL (2011) Diffusive and ebullitive transport of methane and nitrous oxide from streams: are bubble-mediated fluxes important? J Geophys Res Biogeosciences 116:1-5. doi:10.-029/-011JG001656 CrossRef
    Beaulieu JJ, Shuster WD, Rebholz JA (2012) Controls on gas transfer velocities in a large river. J Geophys Res Biogeosciences 117:1-3. doi:10.-029/-011JG001794 CrossRef
    Belger L, Forsberg BR, Melack JM (2010) Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil. Biogeochemistry 105:171-83. doi:10.-007/?s10533-010-9536-0 CrossRef
    Benstead JP, Leigh DS (2012) An expanded role for river networks. Nat Geosci 5:678-79. doi:10.-038/?ngeo1593 CrossRef
    Bernal S, von Schiller D, Sabater F, Martí E (2013) Hydrological extremes modulate nutrient dynamics in mediterranean climate streams across different spatial scales. Hydrobiologia 719:31-2. doi:10.-007/?s10750-012-1246-2 CrossRef
    Bonada N, Resh VH (2013) Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719:1-9. doi:10.-007/?s10750-013-1634-2 CrossRef
    Bond-Lamberty B, Thomson A (2010) A global database of soil respiration data. Biogeosciences 7:1915-926. doi:10.-194/?bg-7-1915-2010 CrossRef
    Campbell C, Chapman S (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial. Appl Environ Microbiol 69:3593-599. doi:10.-128/?AEM.-9.-.-593 CrossRef
    Campeau A, Del Giorgio PA (2014) Patterns in CH4 and CO2 concentrations across boreal rivers: major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Glob Chang Biol 20:1-4. doi:10.-111/?gcb.-2479 CrossRef
    Campeau A, Lapierre J (2014) Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Québec. Glob Biogeochem Cycles 28:1-3. doi:10.-002/-013GB004685 CrossRef
    Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172-85. doi:10.-007/?s10021-006-9013-8 CrossRef
    Cole JJ, Bade DL, Bastviken D et al (2010) Multiple approaches to estimating air-water gas exchange in small lakes. Limnol Oceanogr Methods 8:285-93. doi:10.-319/?lom.-010.-.-85 CrossRef
    Crawford JT, Stanley EH, Spawn SA et al (2014) Ebullitive methane emissions from oxygenated wetland streams. Global Chang Biol 20:3408-422. doi:1
  • 作者单位:Lluís Gómez-Gener (1)
    Biel Obrador (1)
    Daniel von Schiller (2)
    Rafael Marcé (3)
    Joan Pere Casas-Ruiz (3)
    Lorenzo Proia (3)
    Vicen? Acu?a (3)
    Núria Catalán (4)
    Isabel Mu?oz (1)
    Matthias Koschorreck (5)

    1. Department of Ecology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
    2. Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, Apdo. 644, 48080, Bilbao, Spain
    3. Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, Carrer Emili Grahit 101, 17003, Girona, Spain
    4. Limnology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyv?gen 18 D, 75236, Uppsala, Sweden
    5. Department Lake Research, Helmholtz Centre for Environmental Research, Brückstrasse 3a, 39114, Magdeburg, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Biochemistry
    Soil Science and Conservation
    Terrestrial Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-515X
文摘
During summer drought, Mediterranean fluvial networks are transformed into highly heterogeneous landscapes characterized by different environments (i.e., running and impounded waters, isolated river pools and dry beds). This hydrological setting defines novel biogeochemically active areas that could potentially increase the rates of carbon emissions from the fluvial network to the atmosphere. Using chamber methods, we aimed to identify hot spots for carbon dioxide (CO2) and methane (CH4) emissions from two typical Mediterranean fluvial networks during summer drought. The CO2 efflux from dry beds (mean ± SE = 209 ± 10 mmol CO2 m? d?) was comparable to that from running waters (120 ± 33 mmol m? d?) and significantly higher than from impounded waters (36.6 ± 8.5 mmol m? d?) and isolated pools (17.2 ± 0.9 mmol m? d?). In contrast, the CH4 efflux did not significantly differ among environments, although the CH4 efflux was notable in some impounded waters (13.9 ± 10.1 mmol CH4 m? d?) and almost negligible in the remaining environments (mean <0.3 mmol m? d?). Diffusion was the only mechanism driving CO2 efflux in all environments and was most likely responsible for CH4 efflux in running waters, isolated pools and dry beds. In contrast, the CH4 efflux in impounded waters was primarily ebullition-based. Using a simple heuristic approach to simulate potential changes in carbon emissions from Mediterranean fluvial networks under future hydrological scenarios, we show that an extreme drying out (i.e., a four-fold increase of the surface area of dry beds) would double the CO2 efflux from the fluvial network. Correspondingly, an extreme transformation of running waters into impounded waters (i.e., a twofold increase of the surface area of impounded waters) would triple the CH4 efflux. Thus, carbon emissions from dry beds and impounded waters should be explicitly considered in carbon assessments of fluvial networks, particularly under predicted global change scenarios, which are expected to increase the spatial and temporal extent of these environments. Keywords Greenhouse gas fluxes Carbon dioxide Methane Fluvial network Temporary rivers Summer drought

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700