Prion protein “gamma-cleavage”: characterizing a novel endoproteolytic processing event
详细信息    查看全文
  • 作者:Victoria Lewis ; Vanessa A. Johanssen…
  • 关键词:Prion protein ; Endoproteolysis ; Protein processing ; Protein cleavage
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:73
  • 期:3
  • 页码:667-683
  • 全文大小:2,910 KB
  • 参考文献:1.Borchelt DR, Rogers M, Stahl N, Telling G, Prusiner SB (1993) Release of the cellular prion protein from cultured cells after loss of its glycoinositol phospholipid anchor. Glycobiology 3(4):319–329CrossRef PubMed
    2.Bendheim PE, Brown HR, Rudelli RD, Scala LJ, Goller NL, Wen GY, Kascsak RJ, Cashman NR, Bolton DC (1992) Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42(1):149–156CrossRef PubMed
    3.Ford MJ, Burton LJ, Morris RJ, Hall SM (2002) Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience 113(1):177–192CrossRef PubMed
    4.Horiuchi M, Yamazaki N, Ikeda T, Ishiguro N, Shinagawa M (1995) A cellular form of prion protein (PrPC) exists in many non-neuronal tissues of sheep. J Gen Virol 76(10):2583–2587CrossRef PubMed
    5.Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356(6370):577–582CrossRef PubMed
    6.Haigh CL, Drew SC, Boland MP, Masters CL, Barnham KJ, Lawson VA, Collins SJ (2009) Dominant roles of the polybasic proline motif and copper in the PrP23-89-mediated stress protection response. J Cell Sci 122(10):1518–1528. doi:10.​1242/​jcs.​043604 CrossRef PubMed
    7.Brown DR, Nicholas RS, Canevari L (2002) Lack of prion protein expression results in a neuronal phenotype sensitive to stress. J Neurosci Res 67(2):211–224CrossRef PubMed
    8.Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R (2002) Cellular prion protein transduces neuroprotective signals. EMBO J 21(13):3317–3326CrossRef PubMed PubMedCentral
    9.Klamt F, Dal-Pizzol F, Conte da Frota MJ, Walz R, Andrades ME, da Silva EG, Brentani RR, Izquierdo I, Fonseca Moreira JC (2001) Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic Biol Med 30(10):1137–1144CrossRef PubMed
    10.Haigh CL, Lewis VA, Vella LJ, Masters CL, Hill AF, Lawson VA, Collins SJ (2009) PrPC-related signal transduction is influenced by copper, membrane integrity and the alpha cleavage site. Cell Res 19(9):1062–1078. doi:10.​1038/​cr.​2009.​86 CrossRef PubMed
    11.Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, Kellermann O (2000) Signal transduction through prion protein. Science 289(5486):1925–1928CrossRef PubMed
    12.Schneider B, Mutel V, Pietri M, Ermonval M, Mouillet-Richard S, Kellermann O (2003) NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 100(23):13326–13331CrossRef PubMed PubMedCentral
    13.Spielhaupter C, Schatzl HM (2001) PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem 276(48):44604–44612CrossRef PubMed
    14.Kanaani J, Prusiner SB, Diacovo J, Baekkeskov S, Legname G (2005) Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J Neurochem 95(5):1373–1386. doi:10.​1111/​j.​1471-4159.​2005.​03469.​x CrossRef PubMed
    15.Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169(2):341–354CrossRef PubMed PubMedCentral
    16.Colling SB, Collinge J, Jefferys JG (1996) Hippocampal slices from prion protein null mice: disrupted Ca(2+)-activated K+ currents. Neurosci Lett 209(1):49–52CrossRef PubMed
    17.Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, Jefferys JG (1994) Prion protein is necessary for normal synaptic function. Nature 370(6487):295–297CrossRef PubMed
    18.Herms JW, Tings T, Dunker S, Kretzschmar HA (2001) Prion protein affects Ca2+-activated K+ currents in cerebellar purkinje cells. Neurobiol Dis 8(2):324–330CrossRef PubMed
    19.Mallucci GR, Ratte S, Asante EA, Linehan J, Gowland I, Jefferys JG, Collinge J (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21(3):202–210CrossRef PubMed PubMedCentral
    20.Powell AD, Toescu EC, Collinge J, Jefferys JG (2008) Alterations in Ca2+-buffering in prion-null mice: association with reduced afterhyperpolarizations in CA1 hippocampal neurons. J Neurosci 28(15):3877–3886CrossRef PubMed
    21.Mastrangelo P, Westaway D (2001) Biology of the prion gene complex. Biochem Cell Biol 79(5):613–628CrossRef PubMed
    22.Bazan JF, Fletterick RJ, McKinley MP, Prusiner SB (1987) Predicted secondary structure and membrane topology of the scrapie prion protein. Protein Eng 1(2):125–135CrossRef PubMed
    23.Sulkowski E (1992) Aromatic palindrome motif in prion proteins. FASEB J 6(6):2363PubMed
    24.Wopfner F, Weidenhofer G, Schneider R, von Brunn A, Gilch S, Schwarz TF, Werner T, Schatzl HM (1999) Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol 289(5):1163–1178. doi:10.​1006/​jmbi.​1999.​2831 CrossRef PubMed
    25.Goldmann W (1993) PrP gene and its association with spongiform encephalopathies. Br Med Bull 49(4):839–859PubMed
    26.Parkin ET, Watt NT, Turner AJ, Hooper NM (2004) Dual mechanisms for shedding of the cellular prion protein. J Biol Chem 279(12):11170–11178CrossRef PubMed
    27.Taylor DR, Parkin ET, Cocklin SL, Ault JR, Ashcroft AE, Turner AJ, Hooper NM (2009) Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein. J Biol Chem 284(34):22590–22600. doi:10.​1074/​jbc.​M109.​032599 CrossRef PubMed PubMedCentral
    28.Altmeppen HC, Prox J, Puig B, Kluth MA, Bernreuther C, Thurm D, Jorissen E, Petrowitz B, Bartsch U, De Strooper B, Saftig P, Glatzel M (2011) Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Mol Neurodegener 6:36. doi:10.​1186/​1750-1326-6-36 CrossRef PubMed PubMedCentral
    29.Lewis V (2011) Proteolytic processing of the prion protein. In: Collins SJ, Lawson VA (eds) The cellular and molecular biology of prion disease. Research Signpost, Kerala, pp 53–71
    30.Chen SG, Teplow DB, Parchi P, Teller JK, Gambetti P, Autilio-Gambetti L (1995) Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 270(32):19173–19180CrossRef PubMed
    31.McDonald AJ, Dibble JP, Evans EG, Millhauser GL (2014) A new paradigm for enzymatic control of alpha-cleavage and beta-cleavage of the prion protein. J Biol Chem 289(2):803–813. doi:10.​1074/​jbc.​M113.​502351 CrossRef PubMed PubMedCentral
    32.Pan T, Wong P, Chang B, Li C, Li R, Kang SC, Wisniewski T, Sy MS (2005) Biochemical fingerprints of prion infection: accumulations of aberrant full-length and N-terminally truncated PrP species are common features in mouse prion disease. J Virol 79(2):934–943CrossRef PubMed PubMedCentral
    33.Lewis V, Hill AF, Haigh CL, Klug GM, Masters CL, Lawson VA, Collins SJ (2009) Increased proportions of C1 truncated prion protein protect against cellular M1000 prion infection. J Neuropathol Exp Neurol 68(10):1125–1135. doi:10.​1097/​NEN.​0b013e3181b96981​ CrossRef PubMed
    34.Mange A, Beranger F, Peoc’h K, Onodera T, Frobert Y, Lehmann S (2004) Alpha- and beta-cleavages of the amino-terminus of the cellular prion protein. Biol Cell 96(2):125–132CrossRef PubMed
    35.Jimenez-Huete A, Lievens PM, Vidal R, Piccardo P, Ghetti B, Tagliavini F, Frangione B, Prelli F (1998) Endogenous proteolytic cleavage of normal and disease-associated isoforms of the human prion protein in neural and non-neural tissues. Am J Pathol 153(5):1561–1572CrossRef PubMed PubMedCentral
    36.Pan T, Li R, Wong BS, Liu T, Gambetti P, Sy MS (2002) Heterogeneity of normal prion protein in two- dimensional immunoblot: presence of various glycosylated and truncated forms. J Neurochem 81(5):1092–1101CrossRef PubMed
    37.Westergard L, Turnbaugh JA, Harris DA (2011) A naturally occurring C-terminal fragment of the prion protein (PrP) delays disease and acts as a dominant-negative inhibitor of PrPSc formation. J Biol Chem 286(51):44234–44242. doi:10.​1074/​jbc.​M111.​286195 CrossRef PubMed PubMedCentral
    38.Johanssen VA, Johanssen T, Masters CL, Hill AF, Barnham KJ, Collins SJ (2014) C-terminal peptides modelling constitutive PrPC processing demonstrate ameliorated toxicity predisposition consequent to α-cleavage. Biochem J 459(1):103–115. doi:10.​1042/​BJ20131378 CrossRef PubMed
    39.Lewis V, Haigh CL, Masters CL, Hill AF, Lawson VA, Collins SJ (2012) Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity. Mol Neurodegener 7:18. doi:10.​1186/​1750-1326-7-18 CrossRef PubMed PubMedCentral
    40.Klug GM, Boyd A, Zhao T, Stehmann C, Simpson M, McLean CA, Masters CL, Collins SJ (2013) Surveillance for Creutzfeldt-Jakob disease in Australia: update to December 2012. Commun Dis Intell 37(2):E115–E120
    41.Perera WS, Hooper NM (1999) Proteolytic fragmentation of the murine prion protein: role of Tyr-128 and His-177. FEBS Lett 463(3):273–276CrossRef PubMed
    42.Wurch T, Lestienne F, Pauwels PJ (1998) A modified overlap extension PCR method to create chimeric genes in the absence of restriction enzymes. Biotechnol Tech 12(9):653–657. doi:10.​1023/​A:​1008848517221 CrossRef
    43.Walmsley AR, Zeng F, Hooper NM (2001) Membrane topology influences N-glycosylation of the prion protein. EMBO J 20(4):703–712CrossRef PubMed PubMedCentral
    44.Lewis V, Klug GM, Hill AF, Collins SJ (2008) Molecular typing of PrPres in human sporadic CJD brain tissue. In: Hill AF (ed) Prion protein protocols, vol 459., Methods in molecular biologyHumana Press, Totowa NJ, pp 241–247CrossRef
    45.Lewis V, Whitehouse IJ, Baybutt H, Manson JC, Collins SJ, Hooper NM (2012) Cellular prion protein expression is not regulated by the Alzheimer’s amyloid precursor protein intracellular domain. PLoS ONE 7(2):e31754. doi:10.​1371/​journal.​pone.​0031754 CrossRef PubMed PubMedCentral
    46.Lewis V, Collins SJ (2008) Analysis of endogenous PrPC processing in neuronal and non-neuronal cell lines. In: Hill AF (ed) Prion protein protocols, vol 459., Methods in molecular biologyHumana Press, Totowa NJ, pp 229–239CrossRef
    47.Barmada S, Piccardo P, Yamaguchi K, Ghetti B, Harris DA (2004) GFP-tagged prion protein is correctly localized and functionally active in the brains of transgenic mice. Neurobiol Dis 16(3):527–537. doi:10.​1016/​j.​nbd.​2004.​05.​005 CrossRef PubMed
    48.Bian J, Nazor KE, Angers R, Jernigan M, Seward T, Centers A, Green M, Telling GC (2006) GFP-tagged PrP supports compromised prion replication in transgenic mice. Biochem Biophys Res Commun 340(3):894–900. doi:10.​1016/​j.​bbrc.​2005.​12.​085 CrossRef PubMed
    49.De Keukeleire B, Donadio S, Micoud J, Lechardeur D, Benharouga M (2007) Human cellular prion protein hPrPC is sorted to the apical membrane of epithelial cells. Biochem Biophys Res Commun 354(4):949–954. doi:10.​1016/​j.​bbrc.​2007.​01.​096 CrossRef PubMed
    50.Taguchi Y, Shi ZD, Ruddy B, Dorward DW, Greene L, Baron GS (2009) Specific biarsenical labeling of cell surface proteins allows fluorescent- and biotin-tagging of amyloid precursor protein and prion proteins. Mol Biol Cell 20(1):233–244. doi:10.​1091/​mbc.​E08-06-0635 CrossRef PubMed PubMedCentral
    51.Salamat K, Moudjou M, Chapuis J, Herzog L, Jaumain E, Beringue V, Rezaei H, Pastore A, Laude H, Dron M (2012) Integrity of helix 2-helix 3 domain of the PrP protein is not mandatory for prion replication. J Biol Chem 287(23):18953–18964. doi:10.​1074/​jbc.​M112.​341677 CrossRef PubMed PubMedCentral
    52.Rutishauser D, Mertz KD, Moos R, Brunner E, Rulicke T, Calella AM, Aguzzi A (2009) The comprehensive native interactome of a fully functional tagged prion protein. PLoS ONE 4(2):e4446. doi:10.​1371/​journal.​pone.​0004446 CrossRef PubMed PubMedCentral
    53.Saraste J, Palade GE, Farquhar MG (1986) Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Proc Natl Acad Sci USA 83(17):6425–6429CrossRef PubMed PubMedCentral
    54.Walmsley AR, Watt NT, Taylor DR, Perera WS, Hooper NM (2009) alpha-cleavage of the prion protein occurs in a late compartment of the secretory pathway and is independent of lipid rafts. Mol Cell Neurosci 40(2):242–248. doi:10.​1016/​j.​mcn.​2008.​10.​012 CrossRef PubMed
    55.Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y (1988) Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 263(34):18545–18552PubMed
    56.Lawson VA, Collins SJ, Masters CL, Hill AF (2005) Prion protein glycosylation. J Neurochem 93(4):793–801CrossRef PubMed
    57.Lewis V, Hooper NM (2011) The role of lipid rafts in prion protein biology. Front Biosci 16:151–168CrossRef
    58.Hooper NM (2001) Determination of glycosyl-phosphatidylinositol membrane protein anchorage. Proteomics 1(6):748–755CrossRef PubMed
    59.Pastore A, Zagari A (2007) A structural overview of the vertebrate prion proteins. Prion 1(3):185–197CrossRef PubMed PubMedCentral
    60.Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41(Database issue):D348–D352. doi:10.​1093/​nar/​gks1243 CrossRef PubMed PubMedCentral
    61.Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42(Database issue):D503–D509. doi:10.​1093/​nar/​gkt953 CrossRef PubMed PubMedCentral
    62.Kojima A, Konishi M, Akizawa T (2014) Prion fragment peptides are digested with membrane type matrix metalloproteinases and acquire enzyme resistance through Cu(2)(+)-binding. Biomolecules 4(2):510–526. doi:10.​3390/​biom4020510 CrossRef PubMed PubMedCentral
    63.Hande KR, Collier M, Paradiso L, Stuart-Smith J, Dixon M, Clendeninn N, Yeun G, Alberti D, Binger K, Wilding G (2004) Phase I and pharmacokinetic study of prinomastat, a matrix metalloprotease inhibitor. Clin Cancer Res 10(3):909–915CrossRef PubMed
    64.Chen S, Yadav SP, Surewicz WK (2010) Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role of N-terminal residues. J Biol Chem 285(34):26377–26383. doi:10.​1074/​jbc.​M110.​145516 CrossRef PubMed PubMedCentral
    65.You H, Tsutsui S, Hameed S, Kannanayakal TJ, Chen L, Xia P, Engbers JD, Lipton SA, Stys PK, Zamponi GW (2012) Abeta neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-d -aspartate receptors. Proc Natl Acad Sci USA 109(5):1737–1742. doi:10.​1073/​pnas.​1110789109 CrossRef PubMed PubMedCentral
    66.Guillot-Sestier MV, Sunyach C, Druon C, Scarzello S, Checler F (2009) The alpha-secretase-derived N-terminal product of cellular prion, N1, displays neuroprotective function in vitro and in vivo. J Biol Chem 284(51):35973–35986. doi:10.​1074/​jbc.​M109.​051086 CrossRef PubMed PubMedCentral
    67.Sunyach C, Cisse MA, da Costa CA, Vincent B, Checler F (2007) The C-terminal products of cellular prion protein processing, C1 and C2, exert distinct influence on p53-dependent staurosporine-induced caspase-3 activation. J Biol Chem 282(3):1956–1963CrossRef PubMed
    68.Shmerling D, Hegyi I, Fischer M, Blattler T, Brandner S, Gotz J, Rulicke T, Flechsig E, Cozzio A, von Mering C, Hangartner C, Aguzzi A, Weissmann C (1998) Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93(2):203–214CrossRef PubMed
    69.Kuczius T, Koch R, Keyvani K, Karch H, Grassi J, Groschup MH (2007) Regional and phenotype heterogeneity of cellular prion proteins in the human brain. Eur J Neurosci 25(9):2649–2655. doi:10.​1111/​j.​1460-9568.​2007.​05518.​x CrossRef PubMed
    70.Parizek P, Roeckl C, Weber J, Flechsig E, Aguzzi A, Raeber AJ (2001) Similar turnover and shedding of the cellular prion protein in primary lymphoid and neuronal cells. J Biol Chem 276(48):44627–44632CrossRef PubMed
    71.Tagliavini F, Prelli F, Porro M, Salmona M, Bugiani O, Frangione B (1992) A soluble form of prion protein in human cerebrospinal fluid: implications for prion-related encephalopathies. Biochem Biophys Res Commun 184(3):1398–1404CrossRef PubMed
    72.Kikuchi Y, Kakeya T, Nakajima O, Sakai A, Ikeda K, Yamaguchi N, Yamazaki T, Tanamoto K, Matsuda H, Sawada J, Takatori K (2008) Hypoxia induces expression of a GPI-anchorless splice variant of the prion protein. FEBS J 275(11):2965–2976. doi:10.​1111/​j.​1742-4658.​2008.​06452.​x CrossRef PubMed
    73.Magalhaes AC, Silva JA, Lee KS, Martins VR, Prado VF, Ferguson SS, Gomez MV, Brentani RR, Prado MA (2002) Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein. J Biol Chem 277(36):33311–33318. doi:10.​1074/​jbc.​M203661200 CrossRef PubMed
    74.Lee KS, Magalhaes AC, Zanata SM, Brentani RR, Martins VR, Prado MA (2001) Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells. J Neurochem 79(1):79–87CrossRef PubMed
    75.Piccardo P, Dlouhy SR, Lievens PM, Young K, Bird TD, Nochlin D, Dickson DW, Vinters HV, Zimmerman TR, Mackenzie IR, Kish SJ, Ang LC, De Carli C, Pocchiari M, Brown P, Gibbs CJ Jr, Gajdusek DC, Bugiani O, Ironside J, Tagliavini F, Ghetti B (1998) Phenotypic variability of Gerstmann-Straussler-Scheinker disease is associated with prion protein heterogeneity. J Neuropathol Exp Neurol 57(10):979–988CrossRef PubMed
    76.Parchi P, Chen SG, Brown P, Zou W, Capellari S, Budka H, Hainfellner J, Reyes PF, Golden GT, Hauw JJ, Gajdusek DC, Gambetti P (1998) Different patterns of truncated prion protein fragments correlate with distinct phenotypes in P102L Gerstmann-Straussler-Scheinker disease. Proc Natl Acad Sci USA 95(14):8322–8327CrossRef PubMed PubMedCentral
    77.Zou WQ, Capellari S, Parchi P, Sy MS, Gambetti P, Chen SG (2003) Identification of novel proteinase K-resistant C-terminal fragments of PrP in Creutzfeldt-Jakob disease. J Biol Chem 278(42):40429–40436CrossRef PubMed
    78.Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73(7):1339–1347CrossRef PubMed
    79.Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302(5646):871–874CrossRef PubMed
    80.Rogers M, Yehiely F, Scott M, Prusiner SB (1993) Conversion of truncated and elongated prion proteins into the scrapie isoform in cultured cells. Proc Natl Acad Sci USA 90(8):3182–3186CrossRef PubMed PubMedCentral
    81.Fischer M, Rulicke T, Raeber A, Sailer A, Moser M, Oesch B, Brandner S, Aguzzi A, Weissmann C (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15(6):1255–1264PubMed PubMedCentral
    82.Lawson VA, Priola SA, Wehrly K, Chesebro B (2001) N-terminal truncation of prion protein affects both formation and conformation of abnormal protease-resistant prion protein generated in vitro. J Biol Chem 276(38):35265–35271CrossRef PubMed
    83.Marbiah MM, Harvey A, West BT, Louzolo A, Banerjee P, Alden J, Grigoriadis A, Hummerich H, Kan HM, Cai Y, Bloom GS, Jat P, Collinge J, Klohn PC (2014) Identification of a gene regulatory network associated with prion replication. EMBO J 33(14):1527–1547. doi:10.​15252/​embj.​201387150 CrossRef PubMed PubMedCentral
  • 作者单位:Victoria Lewis (1)
    Vanessa A. Johanssen (2)
    Peter J. Crouch (2)
    Genevieve M. Klug (1) (3)
    Nigel M. Hooper (4)
    Steven J. Collins (1) (3)

    1. Department of Medicine, RMH, The University of Melbourne, Parkville, VIC, 3010, Australia
    2. Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
    3. The Australian National Creutzfeldt-Jakob Disease Registry, The University of Melbourne, Parkville, VIC, 3010, Australia
    4. Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, M13 9PT, UK
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
The cellular prion protein (PrPC) is a ubiquitously expressed protein of currently unresolved but potentially diverse function. Of putative relevance to normal biological activity, PrPC is recognized to undergo both α- and β-endoproteolysis, producing the cleavage fragment pairs N1/C1 and N2/C2, respectively. Experimental evidence suggests the likelihood that these processing events serve differing cellular needs. Through the engineering of a C-terminal c-myc tag onto murine PrPC, as well as the selective use of a far-C-terminal anti-PrP antibody, we have identified a new PrPC fragment, nominally ‘C3’, and elaborating existing nomenclature, ‘γ-cleavage’ as the responsible proteolysis. Our studies indicate that this novel γ-cleavage event can occur during transit through the secretory pathway after exiting the endoplasmic reticulum, and after PrPC has reached the cell surface, by a matrix metalloprotease. We found that C3 is GPI-anchored like other C-terminal and full length PrPC species, though it does not localize primarily at the cell surface, and is preferentially cleaved from an unglycosylated substrate. Importantly, we observed that C3 exists in diverse cell types as well as mouse and human brain tissue, and of possible pathogenic significance, γ-cleavage may increase in human prion diseases. Given the likely relevance of PrPC processing to both its normal function, and susceptibility to prion disease, the potential importance of this previously underappreciated and overlooked cleavage event warrants further consideration. Keywords Prion protein Endoproteolysis Protein processing Protein cleavage

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700