Determination of the protonation state of the Asp dyad: conventional molecular dynamics versus thermodynamic integration
详细信息    查看全文
  • 作者:Jinfeng Huang ; Yali Zhu ; Bin Sun ; Yuan Yao ; Junjun Liu
  • 关键词:Asp dyad ; Protonation state ; BACE ; 1 ; Molecular dynamics ; Thermodynamic integration
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:22
  • 期:3
  • 全文大小:637 KB
  • 参考文献:1.Hong L, Koelsch G, Lin X, Wu S, Terzyan S, Ghosh AK, Zhang XC, Tang J (2000) Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science 290(5489):150–153CrossRef
    2.Murray CW, Callaghan O, Chessari G, Cleasby A, Congreve M, Frederickson M, Hartshorn MJ, McMenamin R, Patel S, Wallis N (2007) Application of fragment screening by X-ray crystallography to β-secretase. J Med Chem 50(6):1116–1123CrossRef
    3.Yu N, Hayik SA, Wang B, Liao N, Reynolds CH, Merz KM (2006) Assigning the protonation states of the key aspartates in β-secretase using QM/MM X-ray structure refinement. J Chem Theory Comput 2(4):1057–1069CrossRef
    4.Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating pK as and adding missing hydrogens to macromolecules. Nucleic Acids Res 33(suppl 2):W368–W371
    5.Rajamani R, Reynolds CH (2004) Modeling the protonation states of the catalytic aspartates in β-secretase. J Med Chem 47(21):5159–5166CrossRef
    6.Beveridge A, Heywood G (1993) A quantum mechanical study of the active site of aspartic proteinases. Biochemistry 32(13):3325–3333CrossRef
    7.Friedman R, Caflisch A (2007) The protonation state of the catalytic aspartates in plasmepsin II. FEBS Lett 581(21):4120–4124CrossRef
    8.Adachi M, Ohhara T, Kurihara K, Tamada T, Honjo E, Okazaki N, Arai S, Shoyama Y, Kimura K, Matsumura H (2009) Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography. Proc Natl Acad Sci USA 106(12):4641–4646
    9.Chen J, Yang M, Hu G, Shi S, Yi C, Zhang Q (2009) Insights into the functional role of protonation states in the HIV-1 protease–BEA369 complex: molecular dynamics simulations and free energy calculations. J Mol Model 15(10):1245–1252
    10.Coates L, Tuan H-F, Tomanicek S, Kovalevsky A, Mustyakimov M, Erskine P, Cooper J (2008) The catalytic mechanism of an aspartic proteinase explored with neutron and X-ray diffraction. J Am Chem Soc 130(23):7235–7237. doi:10.​1021/​ja801269x CrossRef
    11.Ellis CR, Shen J (2015) pH-dependent population shift regulates BACE1 activity and inhibition. J Am Chem Soc 137(30):9543–9546CrossRef
    12.Park H, Lee S (2003) Determination of the active site protonation state of β-secretase from molecular dynamics simulation and docking experiment: implications for structure-based inhibitor design. J Am Chem Soc 125(52):16416–16422
    13.Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N (2008) Crystal structure of an active form of BACE1, an enzyme responsible for amyloid β protein production. Mol Cell Biol 28(11):3663–3671. doi:10.​1128/​MCB.​02185-07 CrossRef
    14.Mitchell MJ, McCammon JA (1991) Free energy difference calculations by thermodynamic integration: difficulties in obtaining a precise value. J Comput Chem 12(2):271–275. doi:10.​1002/​jcc.​540120218 CrossRef
    15.Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision D 01. Gaussian, Inc., Wallingford
    16.Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280CrossRef
    17.Case DA, Darden TA, III TEC, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2011) Amber Tools 15. University of California, San Francisco
    18.Case DA, Darden TA, III TEC, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11. University of California, San Francisco
    19.Simonson T, Carlsson J, Case DA (2004) Proton binding to proteins: pK a calculations with explicit and implicit solvent models. J Am Chem Soc 126(13):4167–4180
    20.Jorge M, Garrido NM, Queimada AJ, Economou IG, Macedo EA (2010) Effect of the integration method on the accuracy and computational efficiency of free energy calculations using thermodynamic integration. J Chem Theory Comput 6(4):1018–1027CrossRef
    21.Jorge M, Garrido NM, Queimada AJ, Economou IG, Macedo EA (2010) Effect of the integration method on the accuracy and computational efficiency of free energy calculations using thermodynamic integration. J Chem Theory Comput 6(4):1018–1027. doi:10.​1021/​ct900661c CrossRef
    22.Polgár T, Keserü GM (2005) Virtual screening for β-secretase (BACE1) inhibitors reveals the importance of protonation states at Asp32 and Asp228. J Med Chem 48(11):3749–3755CrossRef
  • 作者单位:Jinfeng Huang (1)
    Yali Zhu (1)
    Bin Sun (1)
    Yuan Yao (2)
    Junjun Liu (1)

    1. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People’s Republic of China
    2. Institute of Theoretical and Simulational Chemistry, The Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, 2 Yikuang Street, Harbin, 150080, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
The protonation state of the Asp dyad is important as it can reveal enzymatic mechanisms, and the information this provides can be used in the development of drugs for proteins such as memapsin 2 (BACE-1), HIV-1 protease, and rennin. Conventional molecular dynamics (MD) simulations have been successfully used to determine the preferred protonation state of the Asp dyad. In the present work, we demonstrate that the results obtained from conventional MD simulations can be greatly influenced by the particular force field applied or the values used for control parameters. In principle, free-energy changes between possible protonation states can be used to determine the protonation state. We show that protonation state prediction by the thermodynamic integration (TI) method is insensitive to force field version or to the cutoff for calculating nonbonded interactions (a control parameter). In the present study, the protonation state of the Asp dyad predicted by TI calculations was the same regardless of the force field and cutoff value applied. Contrary to the intuition that conventional MD is more efficient, our results clearly show that the TI method is actually more efficient and more reliable for determining the protonation state of the Asp dyad.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700