Recent advances in "living"/controlled radical polymerization of phosphorus-containing monomers and their potential applications
详细信息    查看全文
  • 作者:Tianchi Xu ; Lifen Zhang ; Zhenping Cheng ; Xiulin Zhu
  • 关键词:living radical polymerization ; nitroxide ; mediated polymerization (NMP) ; atom transfer radical polymerization (ATRP) ; reversible addition ; fragmentation chain transfer (RAFT) ; phosphorus ; containing monomer
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:58
  • 期:11
  • 页码:1633-1640
  • 全文大小:595 KB
  • 参考文献:1.Monge S, David G. Phosphorus-Based Polymers: from Synthesis to Applications. Cambridge: The Royal Society of Chemistry, 2014CrossRef
    2 a).Price D, Cunliffe LK, Bullett KJ, Hull TR, Milnes GJ, Ebdon JR, Hunt BJ, Joseph P. Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems. Polym Degrad Stab, 2007, 92: 1101–1114CrossRef
    b).Ebdon JR, Price D, Hunt BJ, Joseph P, Gao FG, Milnes GJ, Cunliffe LK. Flame retardance in some polystyrenes and poly(methyl methacrylate)s with covalently bound phosphorus-containing groups: initial screening experiments and some laser pyrolysis mechanistic studies. Polym Degrad Stab, 2000, 69: 267–277.CrossRef
    3 a).Cherenok S, Vovk A, Muravyova I, Shivanyuk A, Kukhar V, Lipkowski J, Kalchenko V. Calix[4]arene α-aminophosphonic acids: asymmetric synthesis and enantioselective inhibition of an alkaline phosphatase. Org Lett, 2006, 8: 549–552CrossRef
    b).Sobhani S, Vafaee A. Molecular iodine: an efficient catalyst for the one-pot synthesis of primary 1-aminophosphonates. J Iran Chem Soc, 2010, 7: 227–236CrossRef
    4 a).Canadell J, Hunt BJ, Cook AG, Mantecon A, Cadiz V. Flame retardance and shrinkage reduction of polystyrene modified with acrylate-containing phosphorus and crosslinkable spiro-orthoester moieties. Polym Degrad Stab, 2007, 92: 1482–1490CrossRef
    b).Dai K, Song L, Yuen RKK, Jiang SH, Pan HF, Hu Y. Enhanced properties of the incorporation of a novel reactive phosphorus- and sulfur-containing flame-retardant monomer into unsaturated polyester resin. Ind Eng Chem Res, 2012, 51: 15918–15926CrossRef
    5.Markova D, Kumar A, Klapper M, Mullen K. Phosphonic acidcontaining homo-, AB and BAB block copolymers via ATRP designed for fuel cell applications. Polymer, 2009, 50: 3411–3421CrossRef
    6.El Asri Z, Chougrani K, Negrell-Guirao C, David G, Boutevin B, Loubat C. An efficient process for synthesizing and hydrolyzing a phosphonated methacrylate: investigation of the adhesive and anticorrosive properties. J Polym Sci Pol Chem, 2008, 46: 4794–4803CrossRef
    7.Senhaji O, Robin JJ, Achchoubi M, Boutevin B. Synthesis and characterization of new methacrylic phosphonated surface active monomer. Macromol Chem Phys, 2004, 205: 1039–1050CrossRef
    8 a).Jawanda M, Lai BFL, Kizhakkedathu JN, Ishihara K, Narain R. Linear and hyperbranched phosphorylcholine based homopolymers for blood biocompatibility. Polym Chem, 2013, 4: 3140–3146CrossRef
    b).Wang XB, Wang L, Yang SX, Zhao HY, Liu L. Multi-responsive protein nanocarriers from an anionic dynamic covalent copolymer. Polym Chem, 2014, 5: 4797–4804CrossRef
    9 a).Kulkarni MA, Lad UP, Desai UV, Mitragotri SD, Wadgaonkar PP. Mechanistic approach for expeditious and solvent-free synthesis of α-hydroxy phosphonates using potassium phosphate as catalyst. CR Chim, 2013, 16: 148–152CrossRef
    b).Pandi M, Chanani PK, Govindasamy S. An efficient synthesis of α-hydroxy phosphonates and 2-nitroalkanols using Ba(OH)2 as catalyst. Appl Catal A-Gen, 2012, 441–442: 119–123CrossRef
    10.Kumar A, Pisula W, Markova D, Klapper M, Müllen K. Protonconducting poly(phenylene oxide)-poly(vinyl benzyl phosphonic acid) block copolymers via atom transfer radical polymerization. Macromol Chem Phys, 2012, 213: 489–499CrossRef
    11.Canniccioni B, Monge S, David G, Robin JJ. RAFT polymerization of dimethyl(methacryloyloxy)-methyl phosphonate and its phosphonic acid derivative: a new opportunity for phosphorus-based materials. Polym Chem, 2013, 4: 3676–3685CrossRef
    12 a).Komber H, Steinert V, Voit B. 1H, 13C, and 31P NMR study on poly(vinylphosphonic acid) and its dimethyl ester. Macromolecules, 2008, 41: 2119–2125CrossRef
    b).Blidi I, Geagea R, Countelier O, Mazieres S, Violleau F, Destarac M. Aqueous RAFT/MADIX polymerisation of vinylphosphonic acid. Polym Chem, 2012, 3: 609–612CrossRef
    13.Becker LW. Poly(alkenyl) phosphonic acid and methods of use thereof. US Patent, 4446046, 1984
    14.Macarie L, Ilia G. Poly(vinylphosphonic acid) and its derivatives. Prog Polym Sci, 2010, 35: 1078–1092CrossRef
    15.Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B. Nitroxide-mediated polymerization. Prog Polym Sci, 2013, 38: 63–235CrossRef
    16.Wang WX, Zhao JF, Zhou NC, Zhu J, Zhang W, Pan XQ, Zhang ZB, Zhu XL. Reversible deactivation radical polymerization in the presence of zero-valent metals: from components to precise polymerization. Polym Chem, 2014, 5: 3533–3546CrossRef
    17 a).Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process. Aust J Chem, 2005, 58: 379–410CrossRef
    b).Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process—a second update. Aust J Chem, 2009, 62: 1402–1472CrossRef
    18.Neisius M, Liang SY, Mispreuve H, Gaan S. Phosphoramidatecontaining flame-retardant flexible polyurethane foams. Ind Eng Chem Res, 2013, 52: 9752–9762CrossRef
    19.Quittmann U, Lecamp L, El Khatib W, Youssef B, Bunel C. Synthesis of a new phosphonated dimethacrylate: photocuring kineticsin homo- and copolymerization, determination of thermal and flameretardant properties. Macromol Chem Phys, 2001, 202: 628–635CrossRef
    20.Chen MJ, Chen CR, Tan Y, Huang JQ, Wang XL, Chen L, Wang YZ. Inherently flame-retardant flexible polyurethane foam with low content of phosphorus-containing cross-linking agent. Ind Eng Chem Res, 2014, 53: 1160–1171CrossRef
    21.Qian XD, Song L, Hu Y, Yuen RKK, Chen LJ, Guo YQ, Hong NN, Jiang SH. Combustion and thermal degradation mechanism of a novel intumescent flame retardant for epoxy acrylate containing phosphorus and nitrogen. Ind Eng Chem Res, 2011, 50: 1881–1892CrossRef
    22.Bressy-Brondino C, Boutevin B, Hervaud Y, Gaboyard M. Adhesive and anticorrosive properties of poly(vinylidene fluoride) powders blended with phosphonated copolymers on galvanized steel plates. J Appl Polym Sci, 2002, 83: 2277–2287CrossRef
    23 a).Raman A, Dubey M, Gouzman I, Gawalt ES. Formation of self-assembled monolayers of alkylphosphonic acid on the native oxide surface of SS316L. Langmuir, 2006, 22: 6469–6472CrossRef
    b).Ping HK, Li FJ. A protective coating of P-Mo-V heteropoly acid on steel. J Electron Spectrosc Relat Phenom, 1997, 83: 93–98CrossRef
    24 a).Kazmaier PM, Moffat KA, Georges MK, Veregin RPN, Hamer GK. Free-radical polymerization for narrow-polydispersity resins. Semiempirical molecular orbital calculations as a criterion for selecting stable free-radical reversible terminators. Macromolecules, 1995, 28: 1841–1846CrossRef
    b).Veregin RPN, Georges MK, Kazmaier PM, Hamer GK. Free radical polymerizations for narrow polydispersity resins: electron spin resonance studies of the kinetics and mechanism. Macromolecules, 1993, 26: 5316–5320CrossRef
    25.Solomon DH, Rizzardo E, Cacioli P. New polymerization process and polymers produced thereby. European Patent, 19840304756, 1984-07-11
    26.Boutevin B, Hervaud Y. Free-radical polymerization of dimethyl vinylbenzylphosphonate controlled by Tempo. Macromolecules, 2002, 35: 6511–6516CrossRef
    27.Britze A, Moonsmann K, Jahne E, Alder HJ, Kuckling D. Synthesis of block copolymers modified with phosphonate ester groups using nitroxide-mediated radical polymerization. Macromol Rapid Commun, 2006, 27: 1906–1912CrossRef
    28.Matyjaszewsk K, Xia JH. Atom transfer radical polymerization. Chem Rev, 2001, 101: 2921–2990CrossRef
    29.Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloridel/dichlorotris-(triphenylphosphine) ruthedum(II)/methylaluminum bis(2,6-di-tertbutylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules, 1995, 28: 1721–1723CrossRef
    30.Tsarevsky NV, Matyjaszewski K. “Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev, 2007, 107: 2270–2299CrossRef
    31.Huang JY, Matyjaszewski K. Atom transfer radical polymerization of dimethyl(1-ethoxycarbonyl)vinyl phosphate and corresponding block copolymers. Macromolecules, 2005, 38: 3577–3583CrossRef
    32.Zhou F, Huck WTS. Three-stage switching of surface wetting using phosphate-bearing polymer brushes. Chem Commun, 2005, 2005: 5999–6001CrossRef
    33.Kobayashi M, Terayama Y, Hosaka N, Kaido M, Suzuki A, Yamada N, Torikai N, Ishihara K, Takahara A. Friction behavior of highdensity poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Matter, 2007, 3: 740–746CrossRef
    34.David G, Negrell C, Manseri A, Boutevin B. Poly(MMA)-b-poly- (monophosphonic acrylate) diblock copolymers obtained by ATRP and used as additives for anticorrosive coatings. J Appl Polym Sci, 2009, 114: 2213–2220CrossRef
    35.David G, Asri ZE, Rich S, Castignolles P, Guillaneuf Y, Lacroix- Desmazes P, Boutevin B. Peculiar behavior of degenerative chain transfer polymerization of a phosphonated methacrylate. Macromol Chem Phys, 2009, 210: 631–639CrossRef
    36.Mukumoto K, Zhong MJ, Matyjaszewski K. Atom transfer radical polymerization of dimethyl(methacryloyloxymethyl) phosphonate. Eur Polym J, 2014, 56: 11–16CrossRef
    37.Matyjaszewski K, Gobelt B, Paik HJ, Horwitz CP. Tridentate nitrogen-based ligands in Cu-based ATRP: a structure-activity study. Macromolecules, 2001, 34: 430–440CrossRef
    38.Wang JS, Matyjaszewski K. Controlled/“living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(ll) redox process. Macromolecules, 1995, 28: 7901–7910CrossRef
    39.Liu PS, Emmons E, Song J. A comparative study of zwitterionic ligands-mediated mineralization and the potential of mineralized zwitterionic matrices for bone tissue engineering. J Mater Chem B, 2014, 2: 7524–7533CrossRef
    40.Xue Y, Pan YF, Xiao HN, Zhao Y. Novel quaternary phosphoniumtype cationic polyacrylamide and elucidation of dual-functional antibacterial/antiviral activity. RSC Adv, 2014, 4: 46887–46895CrossRef
    41.Tam PLE, Moad G, Rizzardo E, Thang SH. Polymerization with living characteristics. European Patent, 19970932627, 1997-07-03
    42.Zhao YL, Perrier S. Synthesis of well-defined homopolymer and diblock copolymer grafted onto silica particles by Z-supported RAFT polymerization. Macromolecules, 2006, 39: 8603–8608CrossRef
    43.Hoogenboom R, Schubert US. RAFT polymerization of 1-ethoxyethyl acrylate: a novel route toward near-monodisperse poly(acrylic acid) and derived block copolymer structures. Macromolecules, 2005, 38: 7653–7659CrossRef
    44.Nuopponen M, Ojala J, Tenhu H. Aggregation behaviour of well defined amphiphilic diblock copolymers with poly(N-isopropylacrylamide) and hydrophobic blocks. Polymer, 2004, 45: 3643–3650CrossRef
    45.Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules, 1998, 31: 5559–5562CrossRef
    46.Stenzel MH, Barner-Kowollik C, Davis TP, Dalton HM. Amphiphilic block copolymers based on poly(2-acryloyloxyethyl phosphorylcholine) prepared via RAFT polymerisation as biocompatible nanocontainers. Macromol Biosci, 2004, 4: 445–453CrossRef
    47.Collins S, Yoda K, Anazawa N, Birkinshaw C. The thermal stability of some vinylidene chloride copolymers. Polym Degrad Stab, 1999, 66: 87–94CrossRef
    48.Rixens B, Severac R, Boutevin B, Lacroix-Desmazes P, Hervaud Y. Migration of additives in polymer coatings: phosphonated additives and poly(vinylidene chloride)-based matrix. Macromol Chem Phys, 2005, 206: 1389–1398CrossRef
    49 a).Stancu IC, Filmon R, Grizon F, Zaharia C, Cincu C, Basle MF, Chappard D. The in vivo calcification capacity of a copolymer, based on methacryloyloxyethyl phosphate, does not favor osteoconduction. J Biomed Mater Res A, 2004, 69: 584–589CrossRef
    b).Zecheru T, Filmon R, Rusen E, Marculescu B, Zerroukhi A, Cincu C, Chappard D. Biomimetic potential of some methacrylate-based copolymers: a comparative study. Biopolymers, 2009, 91: 966–973CrossRef
    50.Suzuki S, Whittaker MR, Grøndahl L, Monteiro MJ, Wentrup-Byrne E. Synthesis of soluble phosphate polymers by RAFT and their in vitro mineralization. Biomacromolecules, 2006, 7: 3178–3187CrossRef
    51.Suzuki S, Rintoul L, Monteiro MJ, Wentrup-Byrne E, Grøndahl L. In vitro mineralization of phosphate containing polymer ad-layers. Polym Prepr, 2007, 48: 430–431
    52.Xu TC, Zhang LF, Cheng ZP, Zhu XL. A novel methacrylate with a bisphosphonate group: RAFT polymerization and flame retardant property of the resultant polymers. Polym Chem, 2015, doi: 10.​1039/​c4py01647e
    53.Lei YD, Wang TX, Mitchell JW, Zaidel L, Qiu JH, Kilpatrick-Liverman LT. Bioinspired amphiphilic phosphate block copolymers as non-fluoride materials to prevent dental erosion. RSC Adv, 2014, 4: 49053–49060CrossRef
    54 a).Tayouo R, David G, Ameduri B, Roziere J, Roualdes S. New fluorinated polymers bearing pendant phosphonic acid groups. Proton conducting membranes for fuel cell. Macromolecules, 2010, 43: 5269–5276CrossRef
    b).Lafitte B, Jannasch P. Polysulfone ionomers functionalized with benzoyl(difluoromethylenephosphonic acid) side chains for proton-conducting fuel-cell membranes. J Polym Sci Pol Chem, 2007, 45: 269–283CrossRef
  • 作者单位:Tianchi Xu (1)
    Lifen Zhang (1)
    Zhenping Cheng (1)
    Xiulin Zhu (1)

    1. Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
Special research attention has been paid to phosphorus-containing materials and their corresponding applications. This mini review considers recent publications devoted to the “living”/controlled radical (co)polymerization of phosphorus-containing monomers. In addition, different properties of the polymers involved in the phosphonate group in various chemical environments are demonstrated, and their potential applications are briefly discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700