Molecular evolution of the vertebrate TLR1 gene family - a complex history of gene duplication, gene conversion, positive selection and co-evolution
详细信息    查看全文
  • 作者:Yinhua Huang (1)
    Nicholas D Temperley (2)
    Liming Ren (3)
    Jacqueline Smith (1)
    Ning Li (3)
    David W Burt (1)
  • 关键词:Gene Duplication ; Gene Conversion ; Positive Selection ; Co ; evolution ; TLR1 gene family
  • 刊名:BMC Evolutionary Biology
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:11
  • 期:1
  • 全文大小:2331KB
  • 参考文献:1. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A: The evolution of vertebrate Toll-like receptors. / Proc Natl Acad Sci USA 2005,102(27):9577鈥?582. CrossRef
    2. Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW: Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. / BMC Genomics 2008, 9:62. CrossRef
    3. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y: Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. / BMC Genomics 2007, 8:124. CrossRef
    4. Long M, Betran E, Thornton K, Wang W: The origin of new genes: glimpses from the young and old. / Nat Rev Genet 2003,4(11):865鈥?75. CrossRef
    5. Roth C, Rastogi S, Arvestad L, Dittmar K, Light S, Ekman D, Liberles DA: Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. / J Exp Zool B Mol Dev Evol 2007,308(1):58鈥?3. CrossRef
    6. Clark AG: Invasion and maintenance of a gene duplication. / Proc Natl Acad Sci USA 1994,91(8):2950鈥?954. CrossRef
    7. Lynch M, Force A: The probability of duplicate gene preservation by subfunctionalization. / Genetics 2000,154(1):459鈥?73.
    8. Walsh B: Population-genetic models of the fates of duplicate genes. / Genetica 2003,118(2鈥?):279鈥?94. CrossRef
    9. Ortiz M, Kaessmann H, Zhang K, Bashirova A, Carrington M, Quintana-Murci L, Telenti A: The evolutionary history of the CD209 (DC-SIGN) family in humans and non-human primates. / Genes Immun 2008,9(6):483鈥?92. CrossRef
    10. Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A: Patterns of positive selection in six Mammalian genomes. / PLoS Genet 2008,4(8):e1000144. CrossRef
    11. Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A: Natural selection in the TLR-related genes in the course of primate evolution. / Immunogenetics 2008,60(12):727鈥?35. CrossRef
    12. Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK, Bouchier C, Tichit M, Neyrolles O, Gicquel B, Kidd JR, Kidd KK, Alcais A, Ragimbeau J, Pellegrini S, Abel L, Casanova JL, Quintana-Murci L: Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. / PLoS Genet 2009,5(7):e1000562. CrossRef
    13. Wlasiuk G, Nachman MW: Adaptation and constraint at Toll-like receptors in primates. / Mol Biol Evol 2010,27(9):2172鈥?186. CrossRef
    14. Downing T, Lloyd AT, O'Farrelly C, Bradley DG: The differential evolutionary dynamics of avian cytokine and TLR gene classes. / J Immunol 2010,184(12):6993鈥?000. CrossRef
    15. Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ: Identification and sequence analysis of chicken Toll-like receptors. / Immunogenetics 2005,56(10):743鈥?53. CrossRef
    16. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO: Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. / Cell 2007,130(6):1071鈥?082. CrossRef
    17. Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO: Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. / Immunity 2009,31(6):873鈥?84. CrossRef
    18. Guan Y, Ranoa DR, Jiang S, Mutha SK, Li X, Baudry J, Tapping RI: Human TLRs 10 and 1 share common mechanisms of innate immune sensing but not signaling. / J Immunol 2010,184(9):5094鈥?103. CrossRef
    19. Keestra AM, de Zoete MR, van Aubel RA, van Putten JP: The central leucine-rich repeat region of chicken TLR16 dictates unique ligand specificity and species-specific interaction with TLR2. / J Immunol 2007,178(11):7110鈥?119.
    20. Higuchi M, Matsuo A, Shingai M, Shida K, Ishii A, Funami K, Suzuki Y, Oshiumi H, Matsumoto M, Seya T: Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily. / Dev Comp Immunol 2008,32(2):147鈥?55. CrossRef
    21. Kruithof EK, Satta N, Liu JW, Dunoyer-Geindre S, Fish RJ: Gene conversion limits divergence of mammalian TLR1 and TLR6. / BMC Evol Biol 2007, 7:148. CrossRef
    22. Cormican P, Lloyd AT, Downing T, Connell SJ, Bradley D, O'Farrelly C: The avian Toll-Like receptor pathway--subtle differences amidst general conformity. / Dev Comp Immunol 2009,33(9):967鈥?73. CrossRef
    23. Brownlie R, Allan B: Avian toll-like receptors. / Cell Tissue Res 2011,343(1):121鈥?0. CrossRef
    24. Yuan X, Zhang M, Ruan W, Song C, Ren L, Guo Y, Hu X, Li N: Construction and characterization of a duck bacterial artificial chromosome library. / Anim Genet 2006,37(6):599鈥?00. CrossRef
    25. Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. / Genome Res 1998,8(3):175鈥?85.
    26. Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. / Genome Res 1998,8(3):186鈥?94.
    27. Gordon D, Abajian C, Green P: Consed: a graphical tool for sequence finishing. / Genome Res 1998,8(3):195鈥?02.
    28. Gordon D, Desmarais C, Green P: Automated finishing with autofinish. / Genome Res 2001,11(4):614鈥?25. CrossRef
    29. Ovcharenko I, Loots GG, Hardison RC, Miller W, Stubbs L: zPicture: dynamic alignment and visualization tool for analyzing conservation profiles. / Genome Res 2004,14(3):472鈥?77. CrossRef
    30. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. / Nucleic Acids Res 1997,25(17):3389鈥?402. CrossRef
    31. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics. 2007,23(21):2947鈥?948.
    32. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ: Jalview Version 2--a multiple sequence alignment editor and analysis workbench. / Bioinformatics 2009,25(9):1189鈥?191. CrossRef
    33. Sawyer S: Statistical tests for detecting gene conversion. / Mol Biol Evol 1989,6(5):526鈥?38.
    34. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC: Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. / J Virol 1999,73(1):152鈥?60.
    35. Smith VS, Page RDM, Johnson KP: Data incongruence and the problem of avian louse phylogeny. / Zool Scr 2004, 33:239鈥?59. CrossRef
    36. Strimmer K, von Haeseler A: Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. / Proc Natl Acad Sci USA 1997,94(13):6815鈥?819. CrossRef
    37. Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. / Syst Biol 2003,52(5):696鈥?04. CrossRef
    38. Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. / Mol Biol Evol 2007,24(8):1586鈥?591. CrossRef
    39. Xia X, Xie Z: DAMBE: software package for data analysis in molecular biology and evolution. / J Hered 2001,92(4):371鈥?73. CrossRef
    40. Huelsenbeck JP, Rannala B: Phylogenetic methods come of age: testing hypotheses in an evolutionary context. / Science 1997,276(5310):227鈥?32. CrossRef
    41. Fares MA, Travers SA: A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses. / Genetics 2006,173(1):9鈥?3. CrossRef
    42. Fares MA, McNally D: CAPS: coevolution analysis using protein sequences. / Bioinformatics 2006,22(22):2821鈥?822. CrossRef
    43. Henikoff S, Henikoff JG: Amino acid substitution matrices from protein blocks. / Proc Natl Acad Sci USA 1992,89(22):10915鈥?0919. CrossRef
    44. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. / Genome Res 2003,13(11):2498鈥?504. CrossRef
    45. Lund O, Nielsen M, Lundegaard C, Worning P: CPHmodels 2.0: X3M a computor Program to Extract 3D Models. / CASP5 conference 2002, A102.
    46. Yang Z, Bielawski JP: Statistical methods for detecting molecular adaptation. / Trends Ecol Evol 2000,15(12):496鈥?03. CrossRef
    47. Janeway CA Jr, Medzhitov R: Innate immune recognition. / Annu Rev Immunol 2002, 20:197鈥?16. CrossRef
    48. Beutler B, Rietschel ET: Innate immune sensing and its roots: the story of endotoxin. / Nat Rev Immunol 2003,3(2):169鈥?76. CrossRef
    49. West AP, Koblansky AA, Ghosh S: Recognition and signaling by toll-like receptors. / Annu Rev Cell Dev Biol 2006, 22:409鈥?37. CrossRef
    50. Akira S, Takeda K: Toll-like receptor signalling. / Nat Rev Immunol 2004,4(7):499鈥?11. CrossRef
    51. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO: Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. / Cell 2007,130(5):906鈥?17. CrossRef
    52. Higgs R, Cormican P, Cahalane S, Allan B, Lloyd AT, Meade K, James T, Lynn DJ, Babiuk LA, O'Farrelly C: Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar Typhimurium infection. / Infect Immun 2006,74(3):1692鈥?698. CrossRef
    53. Iqbal M, Philbin VJ, Smith AL: Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets and cell lines. / Vet Immunol Immunopathol 2005,104(1鈥?):117鈥?27. CrossRef
    54. Fukui A, Inoue N, Matsumoto M, Nomura M, Yamada K, Matsuda Y, Toyoshima K, Seya T: Molecular cloning and functional characterization of chicken toll-like receptors. A single chicken toll covers multiple molecular patterns. / J Biol Chem 2001,276(50):47143鈥?7149. CrossRef
    55. Vallender EJ, Lahn BT: Positive selection on the human genome. / Hum Mol Genet 2004,13(Spec No 2):R245鈥?54. CrossRef
    56. Sawyer SL, Wu LI, Emerman M, Malik HS: Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. / Proc Natl Acad Sci USA 2005,102(8):2832鈥?837. CrossRef
    57. Omueti KO, Beyer JM, Johnson CM, Lyle EA, Tapping RI: Domain exchange between human toll-like receptors 1 and 6 reveals a region required for lipopeptide discrimination. / J Biol Chem 2005,280(44):36616鈥?6625. CrossRef
    58. Sanghavi SK, Shankarappa R, Reinhart TA: Genetic analysis of Toll/Interleukin-1 Receptor (TIR) domain sequences from rhesus macaque Toll-like receptors (TLRs) 1鈥?0 reveals high homology to human TLR/TIR sequences. / Immunogenetics 2004,56(9):667鈥?74. CrossRef
  • 作者单位:Yinhua Huang (1)
    Nicholas D Temperley (2)
    Liming Ren (3)
    Jacqueline Smith (1)
    Ning Li (3)
    David W Burt (1)

    1. Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, EH25 9PS, UK
    2. MRC Human Genetics Unit and the Division of Cancer Research, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
    3. State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100094, People鈥檚 Republic of China
文摘
Background The Toll-like receptors represent a large superfamily of type I transmembrane glycoproteins, some common to a wide range of species and others are more restricted in their distribution. Most members of the Toll-like receptor superfamily have few paralogues; the exception is the TLR1 gene family with four closely related genes in mammals TLR1, TLR2, TLR6 and TLR10, and four in birds TLR1A, TLR1B, TLR2A and TLR2B. These genes were previously thought to have arisen by a series of independent gene duplications. To understand the evolutionary pattern of the TLR1 gene family in vertebrates further, we cloned the sequences of TLR1A, TLR1B, TLR2A and TLR2B in duck and turkey, constructed phylogenetic trees, predicted codons under positive selection and identified co-evolutionary amino acid pairs within the TLR1 gene family using sequences from 4 birds, 28 mammals, an amphibian and a fish. Results This detailed phylogenetic analysis not only clarifies the gene gains and losses within the TLR1 gene family of birds and mammals, but also defines orthologues between these vertebrates. In mammals, we predict amino acid sites under positive selection in TLR1, TLR2 and TLR6 but not TLR10. We detect co-evolution between amino acid residues in TLR2 and the other members of this gene family predicted to maintain their ability to form functional heterodimers. In birds, we predict positive selection in the TLR2A and TLR2B genes at functionally significant amino acid residues. We demonstrate that the TLR1 gene family has mostly been subject to purifying selection but has also responded to directional selection at a few sites, possibly in response to pathogen challenge. Conclusions Our phylogenetic and structural analyses of the vertebrate TLR1 family have clarified their evolutionary origins and predict amino acid residues likely to be important in the host's defense against invading pathogens.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700