Simulation of CO 2 concentrations at Tsukuba tall tower using WRF-CO 2 tracer transport model
详细信息    查看全文
  • 作者:SRABANTI BALLAV ; PRABIR K PATRA ; YOUSUKE SAWA…
  • 关键词:WRF ; CO2 model ; Tsukuba tall tower ; model–observation comparison ; synoptic variation ; diurnal cycle.
  • 刊名:Journal of Earth System Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:125
  • 期:1
  • 页码:47-64
  • 全文大小:7,582 KB
  • 参考文献:Ahmadov R, Gerbig C, Kretschmer R, Koerner S, Neininger B, Dolman A J and Sarrat C 2007 Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model; J. Geophys. Res. 112 D22107. doi: 10.​1029/​2007JD008552 .CrossRef
    Bakwin P S, Tans P P, Zhao C, Ussler W I and Quesnell E 1995 Measurements of carbon dioxide on a very tall tower; Tellus 47B 535–549.CrossRef
    Ballav S, Patra P K, Takigawa M, Ghosh S, De U K, Maksyutov S, Murayama S, Mukai H and Hashimoto S 2012 Simulation of CO2 concentration over east Asia region with the help of the regional model WRF-CO2 ; J. Meteor. Soc. Japan 90 (6) 959–976.CrossRef
    Corbin K D, Denning A S and Gurney K R 2010 The space and time impacts on U.S. regional atmospheric CO2 concentrations from a high resolution fossil fuel CO2 emissions inventory; Tellus 62 (5) 506–511.CrossRef
    Denning A, Fung I and Randall D 1995 Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota; Nature 376 240–243.CrossRef
    Freitas S R, Longo K M, Silva Dias M A F, Chatfield R, Silva Dias P, Artaxo P, Andreae M O, Grell G, Rodrigues L F, Fazenda A and Panetta J 2009 The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 1: Model description and evaluation; Atmos. Chem. Phys. 9 2843–2861. doi: 10.​5194/​acp-9-2843-2009 .CrossRef
    Garcia-Diez M, Fernandez J, Fita L and Yague C 2013 Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe; Quart. J. Roy. Meteorol. Soc. 139 501–514.CrossRef
    Gerbig C, Korner S and Lin J C 2008 Vertical mixing in atmospheric tracer transport models: Error characterization and propagation; Atmos. Chem. Phys. 8 591–602.CrossRef
    Grell G A, Peckham S E, Schmitz R, McKeen S, Frost G, Skamarock W and Eder B 2005 Fully coupled ‘online’ chemistry within the WRF model; Atmos. Environ. 39 (37) 6957–6975.CrossRef
    Haszpra L, Ramonet M, Schmidt M, Barcza Z, Pátkai Z., Tarczay K, Yver C, Tarniewicz J and Ciais P 2012 Variation of CO2 mole fraction in the lower free troposphere, in the boundary layer and at the surface; Atmos. Chem. Phys. 12 8865–8875. doi: 10.​5194/​acp-12-8865-2012 .CrossRef
    Hong S-Y and Kim S-W 2008 Stable boundary layer mixing in a vertical diffusion schem; Proc. Ninth Annual WRF User’s Workshop, Boulder, CO, National Center for Atmospheric Research 3.3 [http://​www.​mmm.​ucar.​edu/​wrf/​users/​workshops/​WS2008/​abstracts/​3-03.​pdf ].
    Hu X-M, Nielsen-Gammon J W and Zhang F 2010 Evaluation of three planetary boundary layer schemes in the WRF Mode; J. Appl. Meteorol. Climatol. 49 1831–1844.CrossRef
    Inoue H Y and Matsueda H 2001 Measurements of atmospheric CO2 from a meteorological tower in Tsukuba, Japan; Tellus 53 (3) 205–219.CrossRef
    Janjic Z I 1994 The step-mountain Eta coordinate model: Further developments of the convection, viscous layer, and turbulence closure scheme; Mon. Wea. Rev. 122 927–945.CrossRef
    Kretschmer R, Gerbig C, Kartens U and Koch F T 2012 Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM; Atmos. Phys. Chem. 12 2441–2458.CrossRef
    Kretschmer R, Gerbig C, Karstens U, Biavati G, Vermeulen A, Vogel F, Hammer S and Totsche K U 2014 Impact of optimized mixing heights on simulated regional atmospheric transport of CO2; Atmos. Chem. Phys. 14 7149–7172.CrossRef
    Lauvaux T and Davis K J 2014 Planetary boundary layer errors in mesoscale inversions of column-integrated CO2 measurements; J. Geophys. Res. Atmos. 119 490–508. doi: 10.​1002/​2013JD020175 .CrossRef
    Law R M et al. 2008 TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002; Global Biogeochem. Cycles 22 GB3009. doi: 10.​1029/​2007GB003050 .CrossRef
    Mellor G L and Yamada T 1982 Development of a turbulence closure model for geophysical fluid problem; Rev. Geophys. 20 851–875.CrossRef
    Miles N L, Richardson S J, Davis K J, Lauvaux T, Andrews A E, West T O, Bandaru V and Crosson E R 2012 Large amplitude spatial and temporal gradients in atmospheric boundary layer CO2 mole fractions detected with a tower-based network in the U.S. upper Midwest; J. Geophys. Res. 117 G01019. doi: 10.​1029/​2011JG001781 .
    Moreira D S, Freitas S R, Bonatti J P, Mercado L M, Rosário N M E, Longo K M, Miller J B, Gloor M and Gatti L V 2013 Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0): Applications to numerical weather forecasting and the CO2 budget in South America; Geosci. Model Dev. 6 1243– 1259.CrossRef
    Nakazawa T, Ishizawa M, Higuchi K and Travett N B A 1997 Two curve fitting methods applied to CO2 flask data; Environmetrics 8 197–218.CrossRef
    Olivier J G J and Berdowski J J M 2001 Global emission sources and sinks; In: The Climate System (eds) Berdowski, J, Guicherit R and Heij B J, Balkema A A, Lisse, Netherlands, pp. 33–78, ISBN: 9058092550.
    Olsen S C and Randerson J T 2004 Differences between surface and column atmospheric CO2 and implications for carbon cycle research; J. Geophys. Res. 109 D02301. doi: 10.​1029/​2003JD003968 .
    Palmiéri J, Orr J C, Dutay J-C, Béranger K, Schneider A, Beuvier J and Somot S 2015 Simulated anthropogenic CO2 storage and acidification of the Mediterranean Sea; Biogeosci. 12 781–802.CrossRef
    Patra P K a., Law R M et al. 2008 TransCom model simulations of hourly atmospheric CO2: Analysis of synoptic-scale variations for the period 2002–2003; Global Biogeochem. Cycles 22 GB4013. doi: 10.​1029/​2007GB003081 .CrossRef
    Peylin P, Houweling S, Krol M C, Karstens U, Rödenbeck C, Geels C, Vermeulen A, Badawy B, Aulagnier C, Pregger T, Delage F, Pieterse G, Ciais P and Heimann M 2011 Importance of fossil fuel emission uncertainties over Europe for CO2 modelling: Model intercomparison; Atmos. Chem. Phys. 11 6607–6622. doi: 10.​5194/​acp-11-6607-2011 .CrossRef
    Pillai D, Gerbig C, Ahmadov R, Roedenbeck C, Kretschmer R, Koch T, Thompson R, Neininger B and Lavric J V 2011 High-resolution simulations of atmospheric CO2 over complex terrain – representing the Ochsenkopf mountain tall tower; Atmos. Chem. Phys. 11 7445–7464. doi: 10.​5194/​acp-11-7445-2011 .CrossRef
    Sarrat C, Noilhan J, Lacarrére P, Ceschia E, Ciais P, Dolman A J, Elbers J A, Gerbig C, Gioli B, Lauvaux T, Miglietta F, Neininger B, Ramonet M, Vellinga O and Bonnefond J M 2009 Mesoscale modelling of the CO2 interactions between the surface and the atmosphere applied to the April 2007 CERES field experiment; Biogeosci. 6 633–646.CrossRef
    Smallman T L, Williams M and Moncrieff J B 2014 Can seasonal and interannual variation in landscape CO2 fluxes be detected by atmospheric observation of CO2 concentrations made at tall tower?; Biogeosci. 11 735– 747.CrossRef
    Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A and Tercier P. 1998 Mixing height determination for dispersion modelling, Report of Working Group 2; In: Harmonization in the preprocessing of meteorological data for atmospheric dispersion models; COST Action 710, CEC Publication EUR 18195 145–265.
    Takahashi T, Sutherland S C, Sweeney C a., Poisson A et al. 2002 Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects; Deep Sea Res.: Part II 49 1601–1622. doi: 10.​1016/​S0967-0645(02)00003-6 .CrossRef
    Takigawa M, Niwano M, Akimoto H and Takahashi M 2007 Development of a one-way nested global-regional air quality forecasting model; SOLA 3 81–84. doi: 10.​2151/​sola.​2007-021 .CrossRef
    Tolk L F, Meesters A G C A, Dolman A J and Peters W 2008 Modelling representation errors of atmospheric CO2mixing ratios at a regional scale; Atmos. Chem. Phys. 8 6587–6596.CrossRef
    Tolk L F, Dolman A J, Meesters A G C A and Peters W 2011 A comparison of different inverse carbon flux estimation approaches for application on a regional domain; Atmos. Chem. Phys. 11 10349–10365.CrossRef
    Vogel F R, Thiruchittampalam B, Theloke J, Kretschmer R, Gerbig C, Hammer S and Levin I 2013 Can we evaluate a fine-grained emission model using high-resolution atmospheric transport modelling and regional fossil fuel CO2 observations?; Tellus B 65 18681.CrossRef
  • 作者单位:SRABANTI BALLAV (1) (4)
    PRABIR K PATRA (2)
    YOUSUKE SAWA (3)
    HIDEKAZU MATSUEDA (3)
    AHORO ADACHI (3)
    SHIGERU ONOGI (3)
    MASAYUKI TAKIGAWA (2)
    UTPAL K DE (1)

    1. School of Environmental Studies, Jadavpur University, Kolkata, 700 032, India.
    4. Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital, 263 002, Uttrakhand, India.
    2. Department of Environmental Geochemical Cycle Research, JAMSTEC, Yokohama, 236-0001, Japan.
    3. Meteorological Research Institute, Tsukuba, Ibaraki, 305-0052, Japan.
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geosciences
    Extraterrestrial Physics and Space Sciences
  • 出版者:Springer India
  • ISSN:0973-774X
文摘
Simulation of carbon dioxide (CO2) at hourly/weekly intervals and fine vertical resolution at the continental or coastal sites is challenging because of coarse horizontal resolution of global transport models. Here the regional Weather Research and Forecasting (WRF) model coupled with atmospheric chemistry is adopted for simulating atmospheric CO2 (hereinafter WRF-CO2) in nonreactive chemical tracer mode. Model results at horizontal resolution of 27 × 27 km and 31 vertical levels are compared with hourly CO2 measurements from Tsukuba, Japan (36.05°N, 140.13 oE) at tower heights of 25 and 200 m for the entire year 2002. Using the wind rose analysis, we find that the fossil fuel emission signal from the megacity Tokyo dominates the diurnal, synoptic and seasonal variations observed at Tsukuba. Contribution of terrestrial biosphere fluxes is of secondary importance for CO2 concentration variability. The phase of synoptic scale variability in CO2 at both heights are remarkably well simulated the observed data (correlation coefficient >0.70) for the entire year. The simulations of monthly mean diurnal cycles are in better agreement with the measurements at lower height compared to that at the upper height. The modelled vertical CO2 gradients are generally greater than the observed vertical gradient. Sensitivity studies show that the simulation of observed vertical gradient can be improved by increasing the number of vertical levels from 31 in the model WRF to 37 (4 below 200 m) and using the Mellor–Yamada–Janjic planetary boundary scheme. These results have large implications for improving transport model simulation of CO2 over the continental sites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700