Physicochemical properties and photocatalytic activity of H3PW12O40/TiO2
详细信息    查看全文
  • 作者:Na Li ; A. V. Vorontsov ; Liqiang Jing
  • 刊名:Kinetics and Catalysis
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:56
  • 期:3
  • 页码:308-315
  • 全文大小:887 KB
  • 参考文献:1.Gorokhovskii, A.V., Tret鈥檡achenko, E.V., Vikulova, M.A., Kovaleva, D.S., and Yurkov, G.Yu., Russ. J. Appl. Chem., 2013, vol. 86, no. 3, p. 343.View Article
    2.Vinogradov, A.V., Vinogradov, V.V., Ermakova, A.V., and Agafonov, A.V., Nanotechnol. Russ., 2014, vol. 9, p. 15.View Article
    3.Obolenskaya, L.N., Dulina, N.A., Savinkina, E.V., and Kuz鈥檓icheva, G.M., Inorg. Mater., 2013, vol. 49, no. 6, p. 572.View Article
    4.Pugachevskii, M.A., Nanotechnol. Russ., 2013, vol. 8, p. 432.View Article
    5.Gavrilov, A.I., Belich, N.A., Shuvaev, S.V., Gil鈥? D.O., Churagulov, B.R., and Gudilin, E.A., Dokl. Chem., 2014, vol. 454, p. 9.View Article
    6.Yao, S., Song, S., and Shi, Z., Russ. J. Phys. Chem. A, 2014, vol. 88, p. 1066.View Article
    7.Zhang, D., High Energy Chem., 2013, vol. 47, p. 177.View Article
    8.Zakharenko, V.S. and Daibova, E.B., High Energy Chem., 2014, vol. 48, p. 93.View Article
    9.Yao, S., Zhang, Y., Shi, Z., and Wang, S., Russ. J. Phys. Chem. A, 2013, vol. 87, p. 69.View Article
    10.Fakhrutdinova, E.D., Shabalina, E.D., Mokrousov, G.M., Salanov, A.N., and Wu, J.J., Russ. J. Inorg. Chem., 2014, vol. 59, p. 291.View Article
    11.Gavrilov, A.I., Balakhonov, S.V., Gavrilova, D.Yu., Churagulov, B.R., and Gudilin, E.A., Dokl. Chem, 2014, vol. 455, p. 58.View Article
    12.Rodionov, I.A., Mechtaeva, E.V., and Zvereva, I.A., Russ. J. Gen. Chem., 2014, vol. 84, p. 611.View Article
    13.Lv, H., Song, J., Zhu, H., Geletii, Y.V., Bacsa, J., Zhao, C., Lian, T., Musaev, D.G., and Hill, C.L., J. Catal., 2013, vol. 307, p. 48.View Article
    14.Zakharova, G.S., Andreikov, E.I., Osipova, V.A., Yatluk, Yu.G., and Puzyrev, I.S., Inorg. Mater., 2013, vol. 49, no. 11, p. 1127.View Article
    15.Baklanova, I.V., Krasil鈥檔ikov, V.N., Zhukov, V.P., Gyrdasova, O.I., Perelyaeva, L.A., Buldakova, L.Yu., Yanchenko, M.Yu., and Shein, I.R., Russ. J. Inorg. Chem., 2014, vol. 59, p. 29.View Article
    16.Zhang, D., Russ. J. Phys. Chem. A, 2013, vol. 87, p. 129.View Article
    17.Jing, L., Xin, B., Yuan, F., Xue, L., Wang, B., and Fu, H., J. Phys. Chem. B, 2006, vol. 110, p. 17860.View Article
    18.Cao, Y., Jing, L., Shi, X., Luan, Y., Durrant, J.R., Tang, J., and Fu, H., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 8530.View Article
    19.Jing, L., Cao, Y., Cui, H., Durrant, J.R., Tang, J., Liu, D., and Fu, H., Chem. Commun., 2012, vol. 48, p. 10775.View Article
    20.Vinogradov, A.V., Vinogradov, V.V., Ermakova, A.V., and Agafonov. A.V, Nanotechnol. Russ., 2013, vol. 8, p. 616.View Article
    21.Wang, J., Li, Y., Wang, J., Zhang, L., Gao, J.Q., Wang, B.X., Yang, Q., and Fan, P., Russ. J. Phys. Chem. A, 2014, vol. 88, p. 149.View Article
    22.He, L., Jing, L., Li, Z., Sun, W., and Liu, C., RSC Adv., 2013, vol. 3, p. 7438.View Article
    23.Yang, Y., Liu. E., Fan J., Hu X., Hou W., Wu F., Ma Y, Russ. J. Phys. Chem. A, 2014, vol. 88, p. 478.View Article
    24.Arkhipova, A.V., Sokolova, T.N., and Kartashov, V.R., Khim. Rastit. Syr鈥檡a, 2007, vol. 4, p. 53.
    25.Arkhipova, A.V., Malkova, K.V., Sokolova, T.N., and Kartashov, V.R., Khim. Rastit. Syr鈥檡a, 2006, vol. 4, p. 11.
    26.Damyanova, S., Cubeiro, M.L., and Fierro, J.L.G., J. Mol. Catal. A: Chem., 1999, vol. 142, p. 85.View Article
    27.Liu, B., Yang, J., Yang, G.-C., and Ma, J.-F., Inorg. Chem., 2013, vol. 52, p. 84.View Article
    28.Guo, Y., Wang, Y., Hu, C., Wang, Y., Wang, E., Zhou, Y., and Feng, S., Chem. Mater., 2000, vol. 12, p. 3501.View Article
    29.Hu, C., Yue, B., and Yamase, T., Appl. Catal., A, 2000, vol. 194, p. 99.View Article
    30.Moriguchi, I., Orishikida, K., Tokuyama, Y., Watabe, H., Kagawa, S., and Teraoka, Y., Chem. Mater., 2001, vol. 13, p. 2430.View Article
    31.Li, M., Xu, C., Ren, J., Wang, E., and Qu, X., Chem. Commun., 2013, vol. 49, p. 11394.View Article
    32.Hori, H., Yamamoto, A., Koike, K., Kutsuna, S., Murayama, M., Yoshimoto, A., and Arakawa, R., Appl. Catal., B, 2008, vol. 82, p. 58.View Article
    33.Antonaraki, S., Androulaki, E., Dimotikali, D., Hiskia, A., and Papaconstantinou, E., J. Photochem. Photobiol., A, 2002, vol. 148, p. 191.View Article
    34.Friesen, D.A., Headley, J.V., and Langford, C.H., Environ. Sci. Technol., 1999, vol. 33, p. 3193.View Article
    35.Halimehjani, A.Z., Farvardin, M.V., Zanussi, H.P., Ranjbari, M.A., and Fattahi, M., J. Mol. Catal. A: Chem., 2014, vol. 381, p. 21.View Article
    36.Thanasilp, S., Schwank, J.W., Meeyoo, V., Pengpanich, S., and Hunsom, M., J. Mol. Catal. A: Chem., 2013, vol. 380, p. 49.View Article
    37.Qiao, Y., Hua, L., Chen, J., Theyssen, N., Leitner, W., and Hou, Z., J. Mol. Catal. A: Chem., 2013, vol. 380, p. 43.View Article
    38.Yoon, M., Chang, J.A., Kim, Y., Choi, J.R., Kim, K., and Lee, S.J., J. Phys. Chem. B, 2001, vol. 105, p. 2539.View Article
    39.Li, J., Kang, W., Yang, X., Yu, X., Xu, L., Guo, Y., Fang, H., and Zhang, S., Desalination, 2010, vol. 255, p. 107.View Article
    40.Cai, T., Liao, Y., Peng, Z., Long, Y., Wei, Z., and Deng, Q., J. Environ. Sci., 2009, vol. 21, p. 997.View Article
    41.Wang, S.-M., Liu, L., Chen, W.-L., Su, Z.-M., Wang, E.-B., and Li, C., Ind. Eng. Chem. Res., 2014, vol. 53, p. 150.View Article
    42.Pruethiarenun, K., Isobe, T., Matsushita, S., and Nakajima, A., Appl. Catal., A, 2012, vols. 445鈥?46, p. 274.View Article
    43.Li, D., Guo, Y., Hu, C., Jiang, C., and Wang, E., J. Mol. Catal. A: Chem., 2004, vol. 207, p. 183.View Article
    44.Zhang, X., Lei, L., Zhang, J., Chen, Q., Bao, J., and Fang, B., Sep. Purif. Technol., 2009, vol. 67, p. 50.View Article
    45.Liu, C., Jing, L., He, L., Luan, Y., and Li, C., Chem. Commun., 2014, vol. 50, p. 1999.View Article
    46.Zhang, S., Chen, L., Liu, H., Guo, W., Yang, Y., Guo, Y., and Huo, M., Chem. Eng. J., 2012, vols. 200鈥?02, p. 300.View Article
    47.Ma, Y., Liu, Y., Xiao, X., Li, X., and Zhou, X., Chin. Sci. Bull., 2005, vol. 50, p. 1985.View Article
    48.Lin, F., Cheng, J., Engtrakul, C., Dillon, A.C., Nordlund, D., Moore, R.G., Weng, T.-C., Williams, S.K.R., and Richards, R.M., J. Mater. Chem., 2012, vol. 22, p. 16817.View Article
  • 作者单位:Na Li (1) (2)
    A. V. Vorontsov (1)
    Liqiang Jing (2)

    1. Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
    2. Heilongjiang University, Harbin, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Physical Chemistry
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3210
文摘
For enhancing its photocatalytic activity, titanium dioxide P25 has been modified by adsorption of the heteropoly acid (HPA) H3PW12O40 from aqueous solution at an HPA concentration of 0.2 to 5 mmol/L. The deposition of the HPA does not alter the phase composition or morphology of the photocatalyst but only causes a slight change in its diffuse reflectance spectrum. IR spectroscopic and XPS studies have confirmed that the HPA molecules on the TiO2 surface are intact. The adsorption of the HPA increases the photovoltage and hydroxyl radical yield under UV irradiation. These characteristics reach their maximum values upon the adsorption of the HPA from its 0.5 mmol/L solution. Electrochemical measurements have demonstrated that the HPA increases the rate of interfacial electron transfer. The deposition of the HPA accelerates the gas-phase oxidation of acetaldehyde and the degradation of phenol and triethyl phosphate in the aqueous medium. The highest activity is shown by the catalyst obtained by the adsorption of H3PW12O40 from its 0.5 mM solution. The results of this study suggest that the HPA is promising for modifying the surface of the TiO2 photocatalyst.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700