Combining BPANN and wavelet analysis to simulate hydro-climatic processes—a case study of the Kaidu River, North-west China
详细信息    查看全文
  • 作者:Jianhua Xu (1354)
    Yaning Chen (2354)
    Weihong Li (2354)
    Paul Y. Peng (3354)
    Yang Yang (1354)
    Chu’nan Song (1354)
    Chunmeng Wei (1354)
    Yulian Hong (1354)
  • 关键词:hydro ; climatic process ; Kaidu River ; simulation ; wavelet analysis (WA) ; back ; propagation artificial neural network (BPANN) ; multiple linear regression (MLR)
  • 刊名:Frontiers of Earth Science
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:7
  • 期:2
  • 页码:227-237
  • 全文大小:323KB
  • 参考文献:1. Anderson D R, Burnham K P, Thompson W L (2000). Null hypothesis testing: problems, prevalence, and an alternative. JWildl Manage, 64(4): 912-23 CrossRef
    2. Banakar A, Azeem M F (2008). Artificial wavelet neuro-fuzzy model based on parallel wavelet network and neural network. Soft Comput, 12(8): 789-08 CrossRef
    3. Bruce L M, Koger C H, Li J (2002). Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans Geosci Rem Sens, 40(10): 2331-338 CrossRef
    4. Burnham K P, Anderson D R (2002). Model Selection and Multimodel Inference: a Practical Information—Theoretic Approach (2nd Edition). New York: Springer-Verlag
    5. Cannon A J, McKendry I G (2002). A graphical sensitivity analysis for statistical climate models: application to Indian monsoon rainfall prediction by artificial neural networks and multiple linear regression models. Int J Climatol, 22(13): 1687-708 CrossRef
    6. Chen J, Kumar P (2004). A modeling study of the ENSO influence on the terrestrial energy profile in North America. J Clim, 17(8): 1657-670 CrossRef
    7. Chen Y N, Takeuchi K, Xu C C, Chen Y P, Xu Z X (2006). Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol Processes, 20(10): 2207-216 CrossRef
    8. Chen Y N, Xu C C, Hao X M, Li W H, Chen Y P, Zhu C G, Ye Z X (2009). Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat Int, 208(1-): 53-1
    9. Chen Y N, Xu Z X (2005). Plausible impact of global climate change on water resources in the Tarim River Basin. Sci China Ser D-Earth Science, 48(1): 65-3 CrossRef
    10. Chen Z S, Chen Y N, Li B F (2012). Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China. Theor Appl Climatol, DOI: 10.1007/ s00704-012-0680-4
    11. Chou C M (2007). Efficient nonlinear modeling of rainfall-runoff process using wavelet compression. J Hydrol (Amst), 332(3-): 442-55 CrossRef
    12. Dorofki M, Elshafie A H, Jaafar O, Karim O A, Mastura S (2012). Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data. International Proceedings of Chemical, Biological and Environmental Engineering, 33: 39-4
    13. Farge M (1992). Wavelet transforms and their applications to turbulence. Annu Rev Fluid Mech, 24(1): 395-58 CrossRef
    14. Gan T Y (2000). Reducing vulnerability of water resources of Canadian Prairies to potential droughts and possible climate warming. Water Resour Manage, 14(2): 111-35 CrossRef
    15. Hao XM, Chen Y N, Xu C C, Li WH (2008). Impacts of climate change and human activities on the surface runoff in the Tarim River Basin over the last fifty years. Water Resour Manage, 22(9): 1159-171 CrossRef
    16. Hsu K, Gupta H V, Sorooshian S (1995). Artificial neural network modeling of the rainfall-runoff process. Water Resour Res, 31(10): 2517-530 CrossRef
    17. Kermani B G, Schiffman S S, Nagle H G (2005). Performance of the Levenberg-Marquardt neural network training method in electronic nose applications. Sens Actuators B Chem, 110(1): 13-2 CrossRef
    18. Labat D (2005). Recent advances in wavelet analyses: Part 1. A review of concepts. J Hydrol (Amst), 314(1-): 275-88 CrossRef
    19. Maier H R, Dandy G C (1998). The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environ Model Softw, 13(2): 193-09 CrossRef
    20. Mallat S G (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell, 11(7): 674-93 CrossRef
    21. Moghadassi A R, Parvizian F, Hosseini S M, Fazlali A R (2009). A new approach for estimation of PVT properties of pure gases based on artificial neural network model. Braz J Chem Eng, 26(1): 199-06 CrossRef
    22. Ramsey J B (1999). Regression over timescale decompositions: a sampling analysis of distributional properties. Econ Syst Res, 11(2): 163-84 CrossRef
    23. Shao Q X, Wong H, Li M, Ip W C (2009). Streamflow forecasting using functional-coefficient time series model with periodic variation. J Hydrol (Amst), 368(1-): 88-5 CrossRef
    24. Shi Y F, Shen Y P, Kang E S, Li D L, Ding Y J, Zhang G W, Hu R J (2007). Recent and future climate change in northwest china. Clim Change, 80(3-): 379-93 CrossRef
    25. Smith L C, Turcotte D L, Isacks B L (1998). Streamflow characterization and feature detection using a discrete wavelet transform. Hydrol Processes, 12(2): 233-49 CrossRef
    26. Sun G M, Dong X Y, Xu G D (2006). Tumor tissue identification based on gene expression data using DWT feature extraction and PNN classifier. Neurocomputing, 69(4-): 387-02 CrossRef
    27. Tao H, Wang G Y, Shao C, Song Y D, Zhou S P (2007). Climate change and its effects on runoff at the headwater of Kaidu River. Journal of Glaciology and Geocryology, 29(3): 413-17 (in Chinese with English abstract)
    28. Torrence C, Compo G P (1998). A practical guide to wavelet analysis. Bull Am Meteorol Soc, 79(1): 61-8 CrossRef
    29. Wang J, Li H, Hao X (2010). Responses of snowmelt runoff to climatic change in an inland river basin, northwestern China, over the past 50 years. Hydrol Earth Syst Sci, 14(10): 1979-987 CrossRef
    30. Xu J H (2002). Mathematical Methods in Contemporary Geography. Beijing: Higher Education Press (in Chinese)
    31. Xu J H, Chen Y N, Ji M H, Lu F (2008b). Climate change and its effects on runoff of Kaidu River, Xinjiang, China: a multiple time-scale analysis. Chin Geogr Sci, 18(4): 331-39 CrossRef
    32. Xu J H, Chen Y N, Li WH, Dong S (2008a). Long-term trend and fractal of annual runoff process in mainstream of Tarim River. Chin Geogr Sci, 18(1): 77-4 CrossRef
    33. Xu J H, Chen Y N, Li W H, Ji M H, Dong S (2009a). The complex nonlinear systems with fractal as well as chaotic dynamics of annual runoff processes in the three headwaters of the Tarim River. J Geogr Sci, 19(1): 25-5 CrossRef
    34. Xu J H, Chen Y N, Li WH, Ji MH, Dong S, Hong Y L (2009b). Wavelet analysis and nonparametric test for climate change in Tarim River Basin of Xinjiang during 1959-006. Chin Geogr Sci, 19(4): 306-13 CrossRef
    35. Xu J H, Chen Y N, Li W H, Nie Q, Hong Y L, Yang Y (2013). The nonlinear hydro-climatic process in the Yarkand River, northwestern China. Stochastic Environ Res Risk Assess, 27(2): 389-99 CrossRef
    36. Xu J H, Chen Y N, Li W H, Yang Y, Hong Y L (2011b). An integrated statistical approach to identify the nonlinear trend of runoff in the Hotan River and its relation with climatic factors. Stochastic Environ Res Risk Assess, 25(2): 223-33 CrossRef
    37. Xu J H, Chen Y N, Lu F, Li W H, Zhang L J, Hong Y L (2011a). The nonlinear trend of runoff and its response to climate change in the Aksu River, western China. Int J Climatol, 31(5): 687-95 CrossRef
    38. Xu J H, Li W H, Ji M H, Lu F, Dong S (2010). A comprehensive approach to characterization of the nonlinearity of runoff in the headwaters of the Tarim River, western China. Hydrol Processes, 24(2): 136-46 CrossRef
    39. Xu J H, Lu Y, Su F L, Ai N S (2004). R/S and wavelet analysis on the evolutionary process of regional economic disparity in China during the past 50 years. Chin Geogr Sci, 14(3): 193-01 CrossRef
    40. Zhang Q, Xu C Y, Tao H, Jiang T, Chen D (2010). Climate changes and their impacts on water resources in the arid regions: a case study of the Tarim River basin, China. Stochastic Environ Res Risk Assess, 24(3): 349-58 CrossRef
  • 作者单位:Jianhua Xu (1354)
    Yaning Chen (2354)
    Weihong Li (2354)
    Paul Y. Peng (3354)
    Yang Yang (1354)
    Chu’nan Song (1354)
    Chunmeng Wei (1354)
    Yulian Hong (1354)

    1354. The Key Laboratory of GIScience of the Education Ministry of China, The Research Center for East-West Cooperation in China, East China Normal University, Shanghai, 200241, China
    2354. The Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
    3354. Department of Community Health and Epidemiology, Queen’s University, Kingston, K7L 3N6, Canada
  • ISSN:2095-0209
文摘
Using the hydrological and meteorological data in the Kaidu River Basin during 1957-008, we simulated the hydro-climatic process by back-propagation artificial neural network (BPANN) based on wavelet analysis (WA), and then compared the simulated results with those from a multiple linear regression (MLR). The results show that the variation of runoff responded to regional climate change. The annual runoff (AR) was mainly affected by annual average temperature (AAT) and annual precipitation (AP), which revealed different variation patterns at five time scales. At the time scale of 32-years, AR presented a monotonically increasing trend with the similar trend of AAT and AP. But at the 2-year, 4-year, 8-year, and 16-year time-scale, AR presented nonlinear variation with fluctuations of AAT and AP. Both MLR and BPANN successfully simulated the hydroclimatic process based on WA at each time scale, but the simulated effect from BPANN is better than that from MLR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700