Frequency- and Temperature-Dependent Dielectric Properties of Goat’s Milk Adulterated with Soy Protein
详细信息    查看全文
  • 作者:Xinhua Zhu ; Fei Kang
  • 关键词:Milk ; Dielectric constant ; Dielectric loss factor ; Soy protein ; Adulteration
  • 刊名:Food and Bioprocess Technology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:8
  • 期:11
  • 页码:2341-2346
  • 全文大小:1,062 KB
  • 参考文献:Ahmed, J., Ramaswamy, H. S., & Raghavan, G. S. V. (2008). Dielectric properties of soybean protein isolate dispersions as a function of concentration, temperature and pH. LWT-Food Science and Technology, 41(1), 71-1.CrossRef
    Fagan, C. C., Everard, C., O’Donnell, C. P., Downey, G., & J O’Callaghan, D. (2005). Prediction of inorganic salt and moisture content of process cheese using dielectric spectroscopy. International Journal of Food Properties, 18(3), 543-57.CrossRef
    Guo, W., Liu, Y., Zhu, X., & Wang, S. (2011a). Dielectric properties of honey adulterated with sucrose syrup. Journal of Food Engineering, 107(1), 1-.CrossRef
    Guo, W., Liu, Y., Zhu, X., & Wang, S. (2011b). Temperature-dependent dielectric properties of honey associated with dielectric heating. Journal of Food Engineering, 102(3), 209-16.CrossRef
    Guo, W., Zhu, X., Liu, H., Yue, R., & Wang, S. (2010). Effects of milk concentration and freshness on microwave dielectric properties. Journal of Food Engineering, 99(2), 344-50.CrossRef
    Kent, M., Peymann, A., Gabriel, C., & Knight, A. (2002). Determination of added water in pork products using microwave dielectric spectroscopy. Food Control, 13(3), 143-49.CrossRef
    Kudra, T., Raghavan, V., Akyel, C., Bosisio, R., & Van de Voort, F. (1992). Electromagnetic properties of milk and its constituents at 2.45?GHz. Journal of Microwave Power & Electromagnetic Energy, 27(4), 199-04.
    Luykx, D. M. A. M., Cordewener, J. H. G., Ferranti, P., Frankhuizen, R., Bremer, M. G. E. G., Hooijerink, H., & America, A. H. P. (2007). Identification of plant proteins in adulterated skimmed milk powder by high-performance liquid chromatography-mass spectrometry. Journal of Chromatography A, 1164(1-), 189-97.CrossRef
    Maraboli, A., Cattaneo, T. M. P., & Giangiacomo, R. (2002). Detection of vegetable proteins from soy, pea and wheat isolates in milk powder by near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 10(1), 63-9.CrossRef
    Nelson, S. O. (2003). Frequency- and temperature-dependent permittivities of fresh fruits and vegetables from 0.01 to 1.8?GHz. Transactions of the ASAE, 46(2), 567-74.
    Nunes, A. C., Bohigas, X., & Tejada, J. (2006). Dielectric study of milk for frequencies between 1 and 20?GHz. Journal of Food Engineering, 76(2), 250-55.
    Sadat, A., Mustajab, P., & Khan, I. A. (2006). Determining the adulteration of natural milk with synthetic milk using ac conductance measurement. Journal of Food Engineering, 77(3), 472-77.CrossRef
    Sanchez-Martinez, M. L., Aguilar-Caballos, M. P., & Gomez-Hens, A. (2009). Homogeneous immunoassay for soy protein determination in food samples using gold nanoparticles as labels and light scattering detection. Analytica Chimica Acta, 636(1), 58-2.CrossRef
    Scholl, P. F., Farris, S. M., & Mossoba, M. M. (2014). Rapid turbidimetric detection of milk powder adulteration with plant proteins. Journal of Agricultural and Food Chemistry, 62(7), 1498-505.CrossRef
    Sharma, R., Poonam, & Rajput, Y. S. (2010). Methods for detection of soymilk adulteration in milk. Milchwissenschaft-Milk Science International, 65(2), 157-60.
    Xin, Q., Zhi Ling, H., Jian Long, T., & Zhu, Y. (2006). The rapid determination of fat and protein content in fresh raw milk using the laser light scattering technology. Optics and Lasers in Engineering, 44(8), 858-69.CrossRef
    Zhu, X., Guo, W., & Jia, Y. (2014). Temperature-dependent dielectric properties of raw cow’s and goat’s milk from 10 to 4,500?MHz relevant to radio-frequency and microwave pasteurization process. Food and Bioprocess Technology, 7(6), 1830-839.
    Zhu, X., Guo, W., & Wu, X. (2012). Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. Journal of Food Engineering, 109(2), 258-66.CrossRef
  • 作者单位:Xinhua Zhu (1)
    Fei Kang (1)

    1. Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Food Science
    Chemistry
    Agriculture
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1935-5149
文摘
The dielectric properties of adulterated raw goat’s milk with soy protein (SP) isolate powder at the SP content of 0-.98 % were measured from 20 to 4500 MHz at 5-5 °C using an open-ended coaxial-line probe. The dielectric constant ε-decreased as either frequency or temperature increased. The dielectric loss factor ε-decreased with increasing frequency to a minimum between about 1000 and 3000 MHz and then increased as frequency increased. It increased with temperature below about 1000 MHz, but decreased above 3000 MHz. Both ε-and ε-increased linearly with increasing SP content. The permittivities of adulterated goat’s milk as functions of SP content and temperature could be accurately described by second-order polynomial models. The SP content might be predicted if the permittivities and temperature of goat’s milk are known. The study is useful to understand the dielectric properties of adulterated milk with soy protein and helpful to develop soy protein detector for milk. Keywords Milk Dielectric constant Dielectric loss factor Soy protein Adulteration

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700