Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode
详细信息    查看全文
文摘
The authors describe an electrochemical strategy for ultrasensitive and specific detection of microRNA (miRNA). It is based on both multicomponent nucleic acid enzyme (MNAzyme) amplification and rolling circle amplification (RCA). In the presence of target miRNAs, partial enzyme A (partzyme A) and partial enzyme B (partzyme B) are assembled to form active MNAzymes. Once formed, the MNAzymes catalyze the cleavage of the hairpin substrates to liberate biotinylated fragments which hybridized with the capture probes immobilized on a gold electrode. The RCA is then initiated to form a product that binds many detection probes. Finally, the amperometric signal (best acquired at a working voltage of 0.22 V vs. Ag/AgCl) is obtained by employing the streptavidinylated alkaline phosphatase as the enzyme. This biosensor has a 1.66 fM detection limit, and a dynamic range that extends from 10 fM to 1 nM. It displays specificity down to single mismatch discrimination of target miRNAs and good reproducibility. It was successfully applied to the determination of miRNA in total RNA samples extracted from human breast adenocarcinoma MCF-7 cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700